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Abstract. Traffic emitted particulate matter in urban area has arisen concern both from public and 

authorities. In addition to technology improvement, traffic control is also considered as a promising way to 

enhance local air quality, but relevance effectiveness is always hard to describe and quantify. As an 

unexpected road blockage arose during Hong Kong protest and lasted more than 70 days, the aim of this 

study is to assess the influence of traffic flow transfer on the multifractality of local particulate matters (PMs). 

Based on the data sets before, during and after the protest, results show that road blockage does not interfere 

the daily cycle of PM in urban area, but can change the multifractality trend by intensifying their long-term 

persistence. 
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1. Introduction  

Previous studies and observations have shown that motor vehicle emissions constitute the major 

anthropogenic source of particulate matter (PM) in the urban environment, which threat public health though 

daily inevitable exposure. Although traffic control is assumed to be the most effective ways to better the 

situation as they cut off the emission directly, but improvements from socio-political mechanisms like 

reroute traffic is always hard to detect and quantify [1]. The emergence of blockages during Hong Kong 

protest from late September to mid-December in 2014 offered an unexpected chance to evaluate the 

influence of emission control oriented traffic reroute plan on local air pollutant. 

Moreover, measured database, similar to complicated system, contains large information like seasonal 

and meteorological change, complicated oscillations and interference, and etc., which need further analysis 

in detail, either qualitatively or quantificationally. Multifractality is regarded as the inherent property of 

complex systems, which may result from long-range correlation or strong fluctuation with persistence 

enhancement [2]. And this persistence of atmospheric time series is not only dangerous to public health, but 

also makes management and control of air pollution very difficult. Meanwhile, Multifractality has been 

found and analysed for air pollutant sequences broadly [3-6].  

By using combined statistical methods, i.e. autocorrelation and multifractal detrended fluctuation 

analysis (MF-DFA), this paper analyses particulate matter data from a roadside station (Causeway Bay) and 

a background station (Tap Mun) to evaluate the influence of shift traffic flow on local PM sequences. The 

outputs are expected to benefit the future reroute planning. 

2. Data and Methodology 

2.1. Materials 
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The key protest emerged with traffic closed for more than 70 days in Admiralty, Causeway Bay and 

Mong Kok ever since 27th September 2014, where are very close to three Hong Kong Environment 

Protection Department (HKEPD) roadside monitoring stations at Central, Causeway Bay and Mong Kok. 

Hence, the study picked the Causeway Bay on Hong Kong Island as the study object, and Tap Mun (or 

Grass-Island) as the background site in the north-eastern part of Hong Kong which is far away from the 

protest region. And the timeline of study period is set to be 79 days since the traffic blockage in Causeway 

Bay was cleared eventually on 15th December: before the protest (from 11th July to 27th September), during 

the protest (from 28th September to 15th December), and after the protest (from 16th December to 4th 

March 2015). 

The hourly time series are available at HKEPD official website [7] and the original data sets are 

described in Fig. 1 accordingly with 1896 data points for both respirable suspended particulates (RSP) and 

fine suspended particulates (FSP). It is found that before the protest happened, the average hourly 

concentration of RSP and FSP in Causeway Bay were largely above the levels in Tap Mun. However, during 

the protest period, it seemed that roadside PMs concentrations have dropped into the same level. And when 

road blockage was cleared, the PMs gradually returned to historical levels. Hence, comments like road 

blockage has made the air was much fresh than before aroused.  
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Fig. 1: Sequence of concentration of RSP and FSP in Causeway bay and Tap Mun 

2.2. Autocorrelation 

Most of time sequences are the superposition results of cyclic variations and random fluctuations [8]. 

Generally, amplitudes of cyclic variations are larger than random fluctuations and cyclic variations in the 

time domain can be identified by virtue of correlation analysis. Hence, the autocorrelation [9] at lag   for 

series )(ix  ),,1( Ni ?  is  













2

2

))((
1

))()()((
1

)()(
)(

mxix
N

mxixmxix
Nxixxix

C






                         (1) 

 

76



where the angular bracket n?  indicates the average over time and N  denotes the total number of time 

series data point. Besides,  
2  and mx  indicate the variance of the time series and the means of the 

corresponding series, respectively. If a time series is periodic in time, then the autocorrelation function is 

also periodic in terms of the lag , and the relative maximum of )(C  that yields the correlation coefficient 

for . 

2.3. MF-DFA method 

Detrended fluctuation analysis (DFA), first proposed by Peng et al [10], is a scaling analysis method for 

detection of long-range correlations embedded in data sequence and takes advantages of easy 

implementation and robust estimation. Based on the DFA method, multifractal detrended fluctuation analysis 

(MF-DFA) was proposed as an extended method to address the multifractal nature that embedded in time 

series [11]. The MF-DFA algorithm addresses much attention and contains the following steps: 

Step 1. Reintegrate the new time series )(iY  from the original time series )(ix , 
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where  x denotes the mean value of )(ix . 

Step 2. Divide the profile )(iY  by s  and get )/int( sNNS  segment of non-overlapping data. Note if the 

length N  is not the integer times of time scale s , and for the sake of not disregarding the remaining 

part of the profile, the same procedure is repeated starting from the opposite end. Thus, SN2  

segments are obtained. 

Step 3. For each segment v , we calculate the local linear trend vy  by the least-square fitting method and 

obtain the first SN  segments variances  
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while for the second half of SN2  segments 
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Step 4. Calculate the
thq  order fluctuation by averaging over all segments 
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If 2q , the standard DFA procedure is regained. MF-DFA algorithm transforms into DFA. If 0q , Eq. 

(4a) can be simplified into 
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Step 5. Repeat the Step 4 for different s , a power-law relation for long-range correlated time series between 

the 
thq  order fluctuation function )(sFq  and the timescale s  is obtained, which reflect self-similar 

behaviours 

                        
)(~)( qh

q ssF                                                                         (6) 

where )(qh  is dubbed generalized Hurst exponent. For stationary time series s , )2(h  is identical to the well-

known Hurst exponent. Then calculate the singularity spectrum )(f  and obtain the relation between 

singularity strength function  and multifractal spectrum )(f  via the Legendre transform 
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)()( qqqf                                                                               (8) 

If the scaling exponent function )(q  is a nonlinear function of q , the time series presents multifractal 

nature. And the strength of multifractality can be characterized by the spans of singularity [6]
 

minmax                                                                                 (9) 
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According to the multifractal theory, the larger the  , the stronger the multifractality does that 

describes the long-term persistence of concentration variations. 

3. Results and Discussion  

3.1. Correlation analysis 

Based on the original data sets, Fig. 2 depicts the distinct periodicity that existing in RSP and FSP hourly 

concentration series from Causeway Bay station (Fig. 2(a) and (c)), while similar property could not be 

found in the time sequences from Tap Mun station (Fig. 2(b) and (s)) which indicated that the background 

concentration do not contain a notable periodicity, neither for RSP nor FSP. The periodic interval for 

Causeway Bay station was 24 hours which accorded with the daily (day and night) traffic cycle, and 

although the relevant correlation coefficients )(C  varied in amplitudes, the road blockages hardly had 

impact on changing the embedded daily cycle of RSP and FSP. Note that during the protest period (Fig. 2(a) 

and (c)) when ]144,72[ , most of the )(C  had decayed to zero and persisted the trend as time extending 

for FSP, which indicated that the cumulative effect of FSP has been weaken on some particular days, while 

such behaviour was not shown obviously for RSP. This might imply that the road blockage would have more 

impact on crippling the ability of new finer particulates to mix with the cumulated ones from previous cycles. 
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Fig. 2: Autocorrelation function of RSP and FSP in Causeway Bay and Tap Mun 

3.2. Multifractal analysis 

Fig. 3 reveals the dependence of the generalized Hurst exponents )(qh  on parameter q for all time 

sequences provided in Fig. 1. Basically, the MF-DFA analysis about the Tap Mun demonstrates that the 

background concentration series obtained before and after the protest, contained strong multifractal for both 

RSP and FSP due to )(qh  curves presented consistency and smooth changes at 0q , which is different 

from the data got during protest period that shown only weak multifractal by slight changes near 0q . 

Hence, the background multifractality of RSP and FSP experienced a first decline and then rise process in 

the research timeframe, which indicated the seasonal and meteorological change impact on the 

multifractality trend of RSP and FSP are limited. However, results displayed by the Causeway Bay station 

were different because monofractal ( )(qh  curves seldom change before 0q ) and weak multifractal were 

found in the data that obtained before and after the protest, while RSP and FSP shown strong multifractal 

feature during the protest period (Fig. 3(a) and (c)), which was an opposite process (first rise and then 

decline) compared to Tap Mun station. Supposed the topographical effect is homogeneous throughout the 
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year, therefore, it can be concluded that the road blockage happened in the protest period at Causeway Bay 

has caused the sudden strengthen change of the multifractality trend.  

In order to quantify the change of the multifractality strength, Fig. 4 shows plots of multifractal spectrum 

)(f  against singularity strength function   for all data sets with corresponding   listed in Table 1. 

The results in Table 1 are agree with the above analysis about the change of multifractality trend, which 

implies that the road blockage has enhanced the long-term persistence of the concentration variations of RSP 

and FSP by strengthen the multifractality.  
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Fig. 3: The generalized Hurst exponent )(qh  vs. parameter q  for RSP and FSP in Causeway Bay and Tap Mun 
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Fig. 4: Multifractal spectrum )(f  vs. singularity strength function   for RSP and FSP in Causeway Bay and Tap 

Mun 

79



4. Conclusion 

By analyzing the particulate matter data before, during and after the Hong Kong protest in Causeway 

Bay station, and compared with corresponding data at Tap Mun, which act as a background station, this 

paper assess the impact of road blockage on local PM Multifractality. Correlation analysis show that road 

blockage cannot change the daily cycle of RSP and FSP in urban area. Moreover, multifractal analysis 

demonstrates that road blockage can enhance the long-term persistence of the concentration variations of 

PMs by strengthen the multifractality.  
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