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Abstract. Research and development in the field of ionic liquids (ILs) is gaining momentum and industrial 

implementation became a fact. Increasing presence of those remarkable chemicals in our lives has to be 

accompanied by a sound assessment of their fate to avoid contamination of the environment. The solution 

overcoming the problem of the toxicity/persistence of some ILs has to be based on design of compounds with 

acceptable environmental impacts guided by technological applicability. Herby we present a short overview 

of key parameters involved in fate assessment of ILs: ecotoxicity, biodegradability, sorption/mobility in the 

environment and a summary of analytical methods that can be used to assess them. 
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1. Introduction  

Ionic liquids (ILs) belong to salt-like chemical compounds exhibiting melting point below 100˚C or even 

below room temperature. As compared to classical salts with high melting points, low melting ILs generally 

consist of bulky, nonsymmetrical organic cations such as dialkylimidazolium, alkylpyridinium, 

dialkylpyrrolidinium and tetraalkylphosphonium. Common anions are chloride, bromide, dicyanamide, 

bis(trifluoromethanesulfonyl)imide, hexafluorophosphate and tetrafluorophosphate. The interest in ILs is 

rising due to their beneficial contribution to technological properties such as a high thermal and 

electrochemical stability, low viscosity or low water solubility [1], [2]. ILs are thermally and water stable, 

have a non-measurable vapour pressure and are able to solvate a variety of organic and inorganic species. 

Due to these properties they could be thought of as ‘‘green solvents’’. The main use of ILs on an industrial 

scale is organic synthesis, especially the reactions catalyzed by transition metals [1], [3], but they  are also 

used in biocatalytic processes [4]. Hydrophobic ILs, can also be successfully used as a solvent and an 

electrolyte, showing a wide range of electrochemical stability, good conductivity, thermal stability. These 

compounds have been employed as highly efficient and safe electrolyte in lithium batteries [5]. 

Since millions of ion combinations are possible it is of importance to outline rational guidelines to 

develop technologically suitable but also environmentally harmless IL. Once their large-scale 

implementation has begun, they are assumed to gain environmental relevance and they have recently been 

reported as “contaminants on the horizon” [6]. In view of their great stability, they could move through 

classical treatment systems to become persistent pollutants of the environment. The long-term consequences 

of their presence in the environment are still unknown. ILs are named ‘green’ usually because of their 

negligible vapour pressure. Low volatility, however, does not eliminate potential environmental hazards and 

ILs might still pose serious threats to aquatic and terrestrial ecosystems.  

This contribution presents a comprehensive strategy aiming to understand the fate of these new industrial 

chemicals through their life cycle in the environment as a complimentary element of their design. 

Toxicological studies, biodegradability evaluation as well as the interaction of ILs with soil environment are 
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presented here. Since analytical methods applicable to various environmental matrices will be very much in 

demand, set of instrumental methods for quantitative determination of IL cations is presented as well. 

2. Ecotoxicology  

Since ILs are non-volatile their main rout of entering the environment will most probably be 

wastewaters/industrial effluents. In view of relatively high solubility of many ILs the aquatic toxicity was the 

first to be examined, followed by toxicity towards soil animals and plants and supported by results obtained 

in simpler test systems (enzyme inhibition, cell line toxicity) giving insights into the mechanisms of action.  

The lipophilicity of IL was, by far, the main factor influencing toxicity, therefore ILs containing long 

alkyl chains, which render them more hydrophobic, are among the most toxic ones and those with polar 

groups in the side chain show reduced toxicity. Elongation of the chain above certain limit (usually above 

C12) causes decrease in the toxicity probably brought about by limited aqueous solubility or steric 

hindrances causing the so called ‘cut-off effect’ [7]-[11]. The type of cation core was found to cause only 

minor effects, in general aromatic structures were more toxic that cyclic ones [7], [11]. It is also well 

understood that in environmentally relevant concentrations simple anions like chlorides or bromides to not 

present an ecotoxicological threat [8]. Nevertheless fluorinated anions undergoing hydrolysis such as BF4
-
 

and PF6
-
 can show considerable toxicity due to the release of HF [12]. Additionally some anions, again 

mostly those showing high lipophilicity, were shown to increase the overall toxicity of ILs significantly [11], 

[13]. For all above mentioned reasons it seems that there are no specific effects caused by ILs and the main 

mechanism is a baseline toxicity – disturbance in cell membrane structure caused by the partitioning of 

lipophilic compounds [7], [8], [11], [14]. Several Structure-Activity models were developed for estimation of 

toxic effects of ILs, their usefulness cannot be stressed enough taking into account the multitude of possible 

ILs structures that await evaluation [9], [15]-[17]. It was also shown that result of simple, one specie test can 

be a basis for predicting toxicity towards more complicated systems e.g. activated sludge [18]. 

3. Biodegradation and Hydrolysis 

For many ILs biodegradation remains the most important mechanism of natural attenuation in the 

environment since they do not undergo hydrolysis or photolysis in environmental conditions. The 

imidazolium based ILs are by far the most thoroughly researched in that matter. Years of studies showed that 

the core structure most probably will not be readily broken down when it contains N-substituents, even 

though reports indicating full mineralisation exist, a capable inoculum is necessary to achieve it [19]-[25]. 

The substituents however can undergo biodegradation, making the whole structure at least partially 

degradable, given that they are straight alkyl chains, longer than C4 and preferably functionalised with amide, 

ether, nitrile or terminal hydroxyl or carboxy groups [21], [23], [26]-[28]. As in the case of ecotoxicity, the 

elongation of the side chain cannot improve biodegradability infinitely as after exceeding a threshold of C12 

the inhibition of inoculum was observed [29]. Better results were obtained for pyridinium-based compounds, 

with the same alkyl chain dependency holding true but full mineralization of the core occurring when longer 

substituents are present (C6-C8) [20], [21], [30]. Little is known about degradation of phosphonium ILs, for 

those that were tested no significant levels of biological degradation were found [29], [31]. On the contrary 

many quaternary ammonium compounds (choline based) are biodegradable [32]. Overall biodegradability of 

IL can be increased by coupling a cation with readily biodegradable anion e.g. octylsulfate, saccharinate, 

lactate, acetate, benzoate etc. which does not make a cation any less resistant to degradation [26], [27], [33]-

[36]. For many ILs anions biodegradation is not relevant as they cannot be a source of carbon for 

microorganisms. Additionally many technologically relevant anions (fluoro- and cyano-based) which do 

contain carbon were shown to be non-biodegradable [37]. Hydrolysis is an abiotic mechanism that could 

contribute to degradation of ILs. Common IL cations are, however, resistant to hydrolysis. In some IL 

hydrolysis affects anion rather easily leading to the formation of toxic compounds (HF, HCl) [38]. Weakly 

coordinating anions were recently reported to be stable against hydrolytic degradation under environmentally 

relevant conditions [39]. 

4. Sorption to Soils 
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One of the critical parts of the chemical risk assessment is soil sorption evaluation. This feature strongly 

affects the transport, reactivity, and bioavailability of organic compounds in the environment. Up to now we 

have initiated the discussion on these issues in the literature concentrating on sorption phenomena and 

mobility of ILs in natural environment. In the very first paper in the filed we have evaluated the strength of 

sorption that was found to depend on both IL structure and physico-chemical properties of soil material, such 

as type of clay minerals, value of cation exchange capacity and organic carbon content [40], [41]. 

Furthermore, while studying the sorption mechanisms in detail we have found that the mechanism of 

layering the surface is likely to be the “double layer” [42], [43]. However, the final saturation is only 

observed for ILs with longer alkyl side chains. The properties of solution such as ionic strength or acidity 

also may be an important factor in binding of ILs to sorbates. Thermodynamic parameters indicate that 

interaction of ILs and surface of sorbate is a spontaneous process of exothermic nature [44]. Laboratory 

migration studies through soil layers are in agreement with batch tests – longer alkyl chained salts react in a 

stronger manner with the surface than the short ones [45]. The attempts to use HPLC to model environmental 

interactions of ILs and soils were also conducted [46]. Finally we have employed chemometric methods for 

evaluation of sorption behavior of large set of ILs to soils. Cluster analysis revealed that ILs form two major 

clusters according to interaction with soil surface – one grouping compounds with short and hydroxylated 

alkyl side chains and the second with the rest of compounds. Pairwise scatterplots for correlations between 

soil variables and sorption coefficients show that the main soil parameter responsible for the sorption of ILs 

in various types of soil is cation exchange capacity [47].  

5. Analysis 

Determination of the IL content in biological or environmental samples requires both simple and 

repeatable analytical techniques. These should enable ILs to be determined at relatively low concentrations, 

such as those in biological or polluted environmental samples. Some recent reports have focused on the 

development of simple analytical methods that make use of separation techniques. For qualitative and 

quantitative determination of components of ILs high performance liquid chromatography in reversed phase 

(RP-HPLC) [48]-[54], ion chromatography (IC-HPLC) [52], [55]-[57] and ion-pair chromatography (IP-

HPLC) [55] capillary electrophoresis (CE), and recently also isotachophoresis (ITP) are mostly used [58]-

[60]. High-performance liquid chromatography in reversed-phase mode appears to be the most common 

method of IL cation determination [48]-[54]. In addition, different types of columns with specific structural 

properties for the separation of mixtures of IL cations are applied [49]. The retention mechanism of IL 

cations on stationary phases with cholesterol ligands chemically bonded to silica (SG-CHOL), and mixed 

stationary phases (SG-MIX) containing cyanopropyl, aminopropyl, phenyl and octadecyl ligands is one of 

widely studied problem. RP-18e Innovation ChromolithTM Performance and Macrosphere 300 C4 packings 

are also used. The possible use of column packing with an immobilized artificial membrane IAM moiety was 

reported [61]. Interactions between imidazolium ILs and stationary phases were investigated in complex 

manner by Studzińska [62]. For that purpose, five ILs, eight packing materials (with different functional 

groups bonded to silica surface) and three different pH values of mobile phases were chosen.  
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