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Abstract—Air pollution in large cities due to the increase of 
population growth by increasing the industrialization progress, 
has created problems for many residents. So, interpolation of 
air pollution across space and time is of immense help for 
sustaining the inhabitants’ health level. In this paper, 
motivated by the statistical analysis of carbon monoxide which 
is one of the most hazardous air polluting agents in Tehran, we 
adopt the likelihood approach. In this setting, we assign a prior 
distribution to the model parameters and use posterior 
simulations for Markov chain Monte Carlo approximation of 
likelihood. Then, the maximum likelihood estimates are 
obtained through the Newton Raphson method. 
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I.  INTRODUCTION 
Air pollution in large cities due to the increase of 

population growth by increasing the industrialization 
progress, has created problems for many residents. Tehran, 
capital of Iran, is one of the polluted cities in the world. Due 
to its geographical location, the ensnared condition as 
surrounded by mountain ranges, and also lack of perennial 
winds, the smoke and other particulate matters produced 
from the daily life do not vanish in the air. Air pollution and 
its health consequences has been a major concern for 
residents, planners and decision makers. Therefore, the 
demand for spatio-temporal models to assess progress in air 
quality has grown rapidly over the past decade. This paper 
concentrates on space-time interpolation of carbon monoxide 
which is one of the most important agents responsible for the 
high pollution in Tehran. 

For space-time analysis, the Bayesian approach has been 
seen gaining popularity (e.g., [1],[3],[5],[6],[7]). Bayesian 
inference proceeds by summarizing the posterior distribution 
which, after observing data, reflects the uncertainty in the 
model parameters. Computing the posterior distribution has 
become feasible particularly, with the advent of the Markov 
chain Monte Carlo (MCMC) algorithms that are applied 
when the target statistical distribution contains a high 
dimensional integral. Notingly, although the Bayesian 
inferences are computationally feasible, they largely depend 
on the choice of the prior distributions which usually have a 
strong unpleasant influence on inferences ([4]). 

On the other hand, with regard to high dimensionality of 
likelihood function, the numerical identification of the 

maximum likelihood estimates is so difficult.  To overcome 
this problem, assigning a prior distribution to the model 
parameters and writing likelihood function as a posterior 
expectation, we provide the maximum likelihood estimation 
of model parameters through the MCMC output from 
posterior distribution. Hence, the maximum likelihood 
estimates are obtained through the Newton Raphson method. 
Compare to the Bayesian inferences, these inferences are 
stable so far as the prior distributions are concerned. 

The article is organized as follows. Section 2 introduces 
the statistical model. Section 3 illustrates the new approach 
for determining maximum likelihood estimation of model 
parameters. In Section 4, we apply this method in order to 
analyze a data set related to CO concentration in Tehran city. 

 

II. STATISTICAL MODEL 
Let ܻሺ·,·ሻ ൌ ሼܻሺݏ, ;ሻݐ ݏ א ࣬ௗ, ݐ א ܶሽ, ݀  1 be a 

Gaussian random field with mean ܧሾܻሺݏ, ሻݐ ൌ ݂ᇱሺݏ,  and ߚሻݐ
covariance function  

,ଵݏሾܻሺݒܥ  ,ଵሻݐ ܻሺݏଶ, ଶሻሿݐ ൌ ଵݏሺߩଶߪ െ ,ଶݏ ଵݐ െ ;ଶݐ   ,ሻߠ
 
where ݏଵ, ଶݏ א ࣬ௗ  and ݐଵ, ଶݐ א ܶ. Where ݂ሺݏ, ሻݐ ൌሺ ଵ݂ሺݏ, ,ሻݐ ڮ , ݂ሺݏ, ሻሻԢݐ  denotes the space-time dependent 
covariates, ߚ ൌ ሺߚଵ, ڮ , ሻԢߚ  is unknown regression 
parameters vector, ߪଶ ൌ ,ݏሾܻሺݎܸܽ  ሻሿ is the fixed varianceݐ
of the random field, ߩሺݏଵ െ ,ଶݏ ଵݐ െ ;ଶݐ  ሻ is the stationaryߠ
space-time correlation function with parameter vector ߠ. 
Suppose that ܼ ൌ ሺܼሺݏଵ, ,ଵሻݐ ڮ , ܼ൫ݏೄ, ൯ሻԢݐ  be a ݊ௌ்݊ -
vector represents the data measured at the sampling locations ݏଵ, ڮ , ೄݏ א ,ଵݐ and time instants ܦ ڮ , ݐ א ܶ such that 
 ܼ൫ݏ, ൯ݐ ൌ ܻ൫ݏ, ൯ݐ  ߳൫ݏ, ;൯ݐ ݅ ൌ 1, ڮ , ݊ௌ, ݆ ൌ 1, ڮ , ்݊  

(1) 
 
where ߳ሺ·,·ሻ  is a white noise process and specifically 
assumed to follow ܰሺ0,  ଶሻ independently. By the statedߙଶߪ
assumptions, ܼ has multivariate normal distribution ܼ~ ܰೄ൫ܺߚ,  ଶܴఎ൯,                            (2)ߪ
 
where ܺ ൌ ሺ݂ᇱሺݏଵ, ,ଵሻݐ ڮ , ݂ᇱ൫ݏೄ, ൯ሻԢݐ  is the known full 
rank ݊ௌ்݊ ൈ   matrix, ݊ௌ்݊    and ܴఎ ൌ Σఏ  ܫଶߙ  is a 
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positive definite ݊ௌ்݊ ൈ ݊ௌ்݊  matrix with ߟ ൌ ሺߠ, ଶሻߙ , Σఏ ൌ ቀߩ൫ݏ െ ,ݏ ݐ െ ;ݐ ൯ቁߠ  and the identity matrix ܫ. 
Applying the noisy observed data, we are intended in 
predicting noiseless random field ܻሺ·,·ሻ at arbitrary location ݏ  and time ݐ . It can be shown that the predictive 
distribution of ܻሺݏ, ሻݐ  given ݖ  and ߮  is normally 
distributed as ܻሺݏ, ,ଵߤሻ~ܰሺݐ  ଵሻߩଶߪ
where ߤଵ ൌ ݂ᇱሺݏ, ߚሻݐ  ݖఏᇱܴఎିଵሺݎ െ ଵߩ ሻ,              (3)ߚܺ ൌ 1 െ ఏݎఏᇱܴఎିଵݎ  and ݎఏ ൌ ൫ߩሺݏ െ ,ݏ ݐ െ ;ݐ .ሻ൯ߠ  As 
observed, space-time predictor is depend on unknown 
parameters. 

III. MAXIMUM LIKELIHOOD ESTIMATION 
With respect to the unobserved random vector ݕ , the 

likelihood function of the model parameters ߮ ൌ ሺߚ, ,ଶߪ  ሻߟ
based on the observed data ݖ ൌ ሺݖሺݏଵ, ,ଵሻݐ ڮ , ,ೞݏ൫ݖ  ൯ሻ, isݐ
obtained by marginalizing, leading to the likelihood, ܮሺ߮; ሻࢠ ൌ  ݂ሺࢠ,  (4)                         .࢟ሻ݀߮|࢟

The ML estimates of parameters ො߮  are the value of  ߮ 
which maximize the likelihood function. Indeed, the 
calculations of the likelihood function and ML estimates 
involve the computational task of high dimension 
integration. We now explain Monte Carlo approximation to 
the likelihood. Assuming ߮ߨ~כሺ߮כሻ  and ݂ሺࢠሻ ൌ ݂ሺכ߮|ࢠሻ݀߮כ, we have 

                ሺఝ;ࢠሻሺࢠሻ ൌ   ݂ሺࢠ, ሻ߮|࢟ గሺఝכሻሺࢠሻ  כ߮݀࢟݀

                         ൌ   ሺ࢟,ࢠ|ఝሻሺ࢟,ࢠ|ఝכሻ ,כሺ߮ߨ ൌ כ߮݀࢟ሻ݀ࢠ|࢟ ෨ܧ ቀ ሺ࢟,ࢠ|ఝሻሺ࢟,ࢠ|ఝכሻ ቚࢠቁ,                                   (5) 
where ܧ෨ሺ· ሻࢠ|  is the expectation with respect to the 
conditional distribution ߨሺ߮כ,  ሻ. Then the Monte Carloࢠ|࢟
maximum likelihood estimates ො߮  can be calculated by 
maximizing ܮெሺߟ; ሻࢠ ൎ ଵெ ∑ ሺ௬|ఝሻሺ௬|ఝכሻெୀଵ                        (6) 
where the values ሺ߮כ, ݅ ,ሻݕ ൌ 1, ڮ , ,כሺ߮ߨ are generated from ,ܯ  ሻ. Note that Rivaz ${\it et.al}$ (2010) discussedࢠ|࢟
how one can simulate samples from the posterior 
distribution using MCMC methods. Since the identity (5) 
holds for any prior distribution, the inferences are invariant 
to the choice  prior. 

 

IV. INTERPOLATION OF CO CONCENTRATION 
This section deals with interpolation of CO concentration 

using our methodology. The data set are weekly averages of 
carbon monoxide (CO) in ppm at 11 monitoring sites, 

geographically distributed across Tehran city, the capital of 
Iran, during 2004. In order to get a main feature of the data, 
some exploratory analysis have been performed. The plots of 
variances versus mean of sites and weeks  showed 
heteroscedasticity suggesting the use of a logarithm 
transformation to stablize the variance over both sites and 
weeks. In addition, the normal plot of the square root of data 
confirm that the data distribution is more closer in agreement 
with the Gaussian distribution.  It must be noted that there is 
a large-scale spatial trend from marginal areas to the city 
center. It seems that a bivariate quadratic polynomial surface 
would be a reasonable structure for spatial trend. Then, we   
choose the best joint spatio-temporal correlation  model 
using the AIC criterion; the product-sum model ([2]) has the 
smallest AIC value. Then, based on every fifth draw from an 
MCMC chain of length 100000 with a burn-in of 50000, 
which was more than sufficient for convergence, we obtain ො߮ . Weekly predictions of CO for the 1st and the 4th weeks of 
January 2005 are shown in Fig.1. As observed from the 
predicted maps, the mean levels for the 4th week are larger 
than the 1st week due to the effect of the fireworks during 
revolution victory celebrations. In addition, the predictions 
are high in northern area of the city for both weeks. The 
main reason for this higher concentration is arrival of cold 
winds and city wide snow fall. Since the northern area of the 
city are surrounded by the Alborz Mountains, it has the 
freezing weather compare to the central and southern areas. 
So, the abundance of household fuel consumption for the 
heating purposes there caused the higher CO in the northern 
area. 
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Figure 1.  Predicted CO concentrations in Tehran city. 
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