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Abstract—Protein-protein interactions (PPI) play a critical role 
in most cellular processes and form the basis of biological 
mechanisms. With developments of high-throughput methods, 
vast amounts of PPI data are available which makes it possible 
to study biology systems at the network level. Recent 
developments have indicated that network theory is making an 
important contribution to the topological study of PPI 
networks. These networks have been shown to have some 
characteristic properties such as small-world effect, scale-free 
degree distribution and self-similarity. However, the 
unweighted PPI networks are far from being optimal because 
of the varying reliability of the interactions data. In this paper, 
we adopt the iterative scoring method to generate weighted 
PPI networks. By using the random sequential box covering 
algorithm, we calculate the fractal dimensions for both the 
original unweighted PPI networks and the generated weighted 
PPI networks. The results show that self-similarity is still 
present in generated weighted PPI networks. This implies that 
it is viable to expand the study of properties of complex 
networks to a wider field including more complex weighted 
networks and possibly directed complex networks. 
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I.  INTRODUCTION  
Protein-protein interactions (PPI) play a critical role in 

most cellular processes and form the basis of biological 
mechanisms. In the post-genome era, the developments of 
high-throughput methods, such as yeast-two-hybrid and mass 
spectrometry, have produced vast amounts of PPI data, 
which makes it possible to study genes and proteins at the 
network level [1].  

The simplest representation of protein-protein interaction 
networks takes the form of a mathematical graph consisting 
of nodes and edges. Proteins are represented as nodes and an 
edge represents a pair of proteins which physically interact. 
PPI networks are normally represented as unweighted graphs. 
However, given the varying reliability of interactions, these 
unweighted graphs are far from being optimal in representing 
the data [2,3]. More effective analysis would be achieved by 
considering weighted PPI networks in which each edge is 
associated with a weight representing the probability of an 
interaction. For this aim, many computational approaches 
have been proposed. Deane et al. [2] proposed two methods 
for assessing the overall quality of an interaction dataset. 

Patil and Nakamura [3] used a combination of genomic 
features including sequence, structure and gene ontology 
annotation to assign reliability to protein-protein interactions 
in Saccharomyces cerevisiae. Besides gene annotation, gene 
expression and sequence homology, several methods based 
on the topology of PPI networks have been proposed such as 
CDdistance [4], FSWeight [5] and the iterative scoring 
method [6]. These methods have been applied to predict 
more reliably protein interactions, essential proteins and 
protein complexes, etc. [2-6]. 

At the same time, topological properties of complex 
networks have attracted much attention in diverse areas of 
science. Many networks such as the World Wide Web, 
metabolic networks as well as PPI networks have been 
shown to share similar characteristic properties including the 
small-world property [7,8], the scale-free degree distribution 
[9-11] and self-similarity [12].  

The small-world property means the characteristic path 
length L and the number of nodes N have the following 
relationship: 

                             log( )L N∝ .                                    (1) 
The small-world effect means that any two nodes can be 

connected via a short path of a few links [7]. A famous 
example is the so-called ‘six degrees of separation’ in social 
networks [8]. A large number of real networks are called 
‘scale-free’ because they show a power-law distribution of 
the number of links per node, i.e. the probability distribution 
of the number of links per node Pk (also known as the degree 
distribution) satisfies a power-law Pk ~ k-γ with the degree 
exponent γ varying in the range 2< γ <3 [9]. Originated from 
the small-world property, it is widely believed that complex 
networks are not self-similar under a length-scale 
transformation. After analyzing a variety of real complex 
networks, Song et al. [12] found that they in fact consist of 
self-repeating patterns on all length scales, i.e., they have 
self-similar structures. In order to confirm the self-similarity 
of complex networks, Song et al. [12] analyzed the PPI 
networks of Homosapiens, the fruit fly D. melanogaster, the 
bacteria E.coli and H. pylori, the baker’s yeast S. cerevisiae 
and the nematode worm C. elegans which are all available 
via the DIP database [18]. They calculated their fractal 
dimension, which is a widely used tool to characterize 
complex fractal sets [12-17]. The results indicated that 
among these organisms, E.coli and Homosapiens possess 
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self-similarity with nearly the same fractal dimension of 2.3. 
The other PPI networks also showed fractal scaling, but the 
estimates of their fractal dimensions have larger error range, 
which may be due to their incomplete data. Kim et al. [16] 
introduced another method of random sequential box 
covering and applied to a variety of complex networks.  

However, these studies of self-similarity are mainly 
based on unweighted networks. So we might wonder if 
weighted networks still have the property of self-similarity 
and whether the generated weighted networks still have the 
same fractal dimension as the original unweighted networks. 

In this paper, we consider the PPI networks of 
Homosapiens, E.coli (a bacterium), Arabidopsis Thaliana (a 
plant), C. elegans and baker’s yeast S. cerevisiae from two 
databases. Firstly, we adapt the random sequential box-
covering algorithm to calculate their fractal dimensions. 
Then, by using the iterative scoring method, we generate 
their weighted PPI networks and use the same algorithm to 
calculate the fractal dimensions of the generated weighted 
PPI networks. We will investigate the self-similarity in both 
PPI networks and generated weighted PPI networks. 

II. METHODS 
In this section, we introduce the box-covering methods 

for calculating the fractal dimension of complex networks 
and an iterative scoring method for generating weighted PPI 
networks based on the original unweighted PPI networks. 

A. The box covering method to calculate  fractal 
dimension 
The box covering method is a basic tool to measure the 

fractal dimension of conventional fractal objects embedded 
in Euclidean space. However, such a method cannot be 
applied to real networks such as PPI networks because the 
Euclidean metric is not well defined for such networks. Song 
et al. [12, 14] studied the fractality and self-similarity in 
complex networks by using box covering techniques. They 
proposed several possible box covering algorithms [14] and 
applied them to a number of models and real-world networks. 
Meanwhile, Kim et al [15-17] introduced another method 
called the random sequential box-covering which shares a 
common spirit with the other algorithms introduced by Song 
et al. [14]. The random sequential box covering method 
contains a random process of selecting the position of the 
center of each box. In this study, we adapt the random 
sequential box-covering algorithm [16] to measure the fractal 
dimension of PPI networks. The details of this algorithm are 
as follows. For a given network A, let NB the number of 
boxes with linear size rB that are needed to cover the entire 
network. The fractal dimension dB is then given by 

                        
Bd

BB rN −∝                                     (2) 
By measuring the distribution of NB for different box 

sizes, the fractal dimension dB can be obtained by fitting the 
power law distribution through the following steps [16]. 

(i) Randomly select a node at each step, and the 
selected node would be the center or seed of a box; 

(ii) Search the network at distance rB from the seed and 
cover all the nodes that have been found within distance rB 
but not covered yet. Assign newly covered nodes to the new 
box. If no newly covered nodes have been found, then the 
box is discarded. 

(iii) Repeat (i) and (ii) until all the nodes in the network 
have been assigned to their respective boxes. 

By using this algorithm, we calculated the fractal 
dimension for the same data of the human PPI network as in 
Kim et al [16] and obtained a similar fractal dimension of 
2.20± 0.09. We then used this method to estimate the fractal 
dimension of the other PPI networks and their weighted PPI 
networks. 

B. The iterative scoring method 
Many methods have been proposed to assess the 

reliability of protein interactions. These methods usually 
assign a score to each protein pair such that the higher the 
score is, the more likely the proteins interact with each other. 
Among these methods, CDdistance [4] and FSWeight [5] are 
measures calculated using the number of common neighbors 
of two proteins. They are initially proposed to predict protein 
functions, and have been shown to perform well for 
assessing the reliability of protein interactions. 

The intuition behind the iterative scoring method is that if 
the score of an interaction reflects its reliability, then the 
scored interactions should better represent the actual 
interaction network than the initial binary ones, and we 
should be able to further improve score computation by re-
computing the score of each protein pair using the scored 
interactions. Here, we use the AdjustCD distance [6] which 
is a variant of CDdistance to calculate the score of protein 
pairs.  

A PPI network could be represented as an undirected 
network G = (V, E), where the node set V is the set of 
proteins and the edge set E is the set of interactions between 
proteins. We use u, v, x to denote individual nodes (proteins) 
and (u, v) to denote the edge between node u and node v. The 
neighbor set of a node u in G, denoted as Nu, is defined as Nu 
= {v| (u, v) ∈E}. For a given pair of proteins u and v, the 
distance AdjustCD [6] of edge (u, v) is defined as  

   
2

( , ) u v

u u v v

N N
AdjustCD u v

N Nλ λ
=

+ + +

∩
              (3) 

where λu and λv are used to penalize proteins with very few 
neighbors as in FSWeight [5] defined as 

                max 0, xx V
u u

N
N

V
λ ∈= −

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑

                  (4) 

                 max 0, xx V
v v

N
N

V
λ ∈= −

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑

                    (5) 

Based on this definition, if the degree of a node u is 
below the average degree, then it is adjusted to the average 
degree. 

The iterative version of AdjustCD is defined as follows:  
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where 1( , )kw x u−  and 1( , )kw x v−  are scores of (x, u) and (x, 
v) respectively in the (k-1)-th iteration. 

Initially, if there is an edge between x and u in the 
original PPI network, then w0 (x, u) = 1, otherwise, w0(x, u) = 
0. The two terms λu

k and λv
k are also defined based on 

weighted degree: 
( )

( )
1

1
,
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It is not difficult to see that w1 (u,v) = AdjustCD (u, v). 
CD-distance and FSWeight can be iterated in a similar way. 
Liu et al. [6] showed that the iterative scoring method can 
improve functional homogeneity and localization coherence 
of top ranked interactions, and the iterative scoring method 
performs best when k = 2, and the subsequent iterations do 
not improve the performance further. By using this method, 
we generate a weighted PPI network based on the original 
unweighted PPI network, and we take the score of each 
protein pair as the weight of the edge between them.  

III. RESULTS 
The protein-protein interaction data used here are were 

downloaded from two databases. The PPI networks of 
C.elegans and Arabidopsis thaliana were downloaded from 
BioGRID [19]. The PPI networks of baker’s yeast 
S.cerevisiae, E.coli and Homosapiens were downloaded 
from DIP [18]. 

Our fractal scaling analysis is based on connected 
networks, which mean there are no isolated nodes or all the 
nodes in the network must be reachable. 

Firstly, we need to find the largest connected part of each 
PPI data. For this step, many tools and methods could be 
used. In our study, we adopt the Cytoscape [20] which is an 
open bioinformatics software platform for visualizing 
molecular interaction networks and analyze network graphs 
of any kind involving nodes and edges. With Cytoscape, we 
get the largest connected part of each interacting PPI 
network used in our fractal analysis. 

  Among the original five PPI networks (human, 
Arabidopsis thaliana, E.coli, yeast and C.elegans), self-
similarity is apparent. By using the iterative scoring method, 
we then transform the PPI networks into weighted networks 
and calculate their fractal dimension. The fractal scaling of 
each PPI network and its weighted PPI network is showed in 
Figures. 1 -.5, where we use triangle (Δ) for the original 
network and circle (○) for the weighted network, together 
with their fitted lines. The fractal dimension is the absolute 
value of the slope of each fitted line. The fractal dimensions 
of weighted PPI networks are slightly smaller than those of 
the original PPI networks. The numerical results of fractal 

scaling for the original PPI networks and their weighted PPI 
networks are summarized in Tables I and II respectively. For 
each PPI network, N is the number of nodes of the largest 
connected part, dB is the fractal dimension with error range. 

TABLE I.  NUMERICAL RESULTS OF FRACTAL SCALING FOR THE 
ORIGINAL PPI NETWORKS 

PPI database N dB error
Human DIP 503 2.20 ± 0.09
E.coli DIP 642 2.37 ± 0.11
Yeast DIP 1922 2.90 ± 0.20

C.elegans BioGRID 3343 3.48 ± 0.24
Arabidopsis Thaliana BioGRID 1298 2.26 ± 0.06

 

TABLE II.  NUMERICAL RESULTS OF FRACTAL SCALING FOR THE 
WEIGHTED PPI NETWORKS 

Weighted PPI database N dB error
Human DIP 417 1.85 ± 0.04
E.coli DIP 451 1.98 ± 0.07
Yeast DIP 1713 2.06 ± 0.04

C.elegans BioGRID 2444 2.04 ± 0.05
Arabidopsis Thaliana BioGRID 800 2.25 ± 0.10
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Figure 1.  fractal scaling of the Homosapien PPI 
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Figure 2.  Fractal scaling of the Arabidopsis thaliana PPI 
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Figure 3.  Fractal scaling of the E.coli PPI 
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Figure 4.  Fractal scaling of the C.elegans PPI  
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Figure 5.  Fractal scaling of the yeast  PPI 

IV. CONCLUSION 
In conclusion, self-similarity has been found in weighted 

PPI networks. In this paper, we first use the iterative scoring 
method to generate weighted PPI networks based on the 
original PPI networks and then calculate their fractal 
dimensions. For five PPI networks of Homosapiens, E. coli, 
Arabidopsis Thaliana, C. elegans and baker’s yeast S. 
cerevisiae, we demonstrate that self-similarity exists in both 
the PPI networks and their weighted networks. The fractal 
dimensions of weighted PPI networks are slightly smaller 
than those of the original PPI networks. We have 
successfully applied the box-covering algorithm to perform 
fractal analysis on weighted PPI networks. This suggests that 
the study of self-similarity of complex networks can be 
expanded to a wider field including weighted complex 
networks and possibly directed complex networks. 
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