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Abstract—Volume rendering has become an important 
technique for visualizing and exploring features in 3D scalar 
fields. However, it is difficult to visualize important structures 
and boundaries in volume datasets since different types of 
tissues are represented in overlap ranges of scalar values. In 
this paper, we propose a novel orientation visualizing transfer 
function to reveal inner structures and orientations of 
materials. In our approach, gradients are projected from 3D 
space onto RGB color space. Since both the directions and 
magnitudes of gradients are exploited, structures of similar 
scalar values and gradient magnitudes can still be 
distinguished by their orientations. Experiment results show 
our approach provides clear perspectives of the structures and 
unique features in visualizing orientation related details. 

Keywords-orientation visualizing; transfer function; volume 
rendering; gradient 

I.  INTRODUCTION 
Volume rendering has become an important technique for 

various visualization applications such as medical imaging 
and scientific visualization. In volume rendering, the scalar 
field is interpreted as a participating medium which emits 
and absorbs lights at the same time. The optical properties 
such as color and opacity are obtained from the underlying 
scalar field by a user-specified transfer function. In order to 
gain desired results, the specification of optical properties 
should be able to highlight tissues or features that are of 
interests. Transfer function specification is not a trivial task 
and it is an unintuitive task for average users to specify a 
transfer function that works properly, which is usually a 
monotonous process of trial and error. 

Transfer function approaches widely used are mostly 
based on scalar values. Unfortunately, different tissue types 
are usually represented in similar or even overlapping ranges 
of scalar values in CT and MRI datasets [1]. Therefore, 
traditional transfer function approaches, which assign optical 
properties only based on scalar values, are inadequate to 
extract structures of interest from volume datasets. 

The work presented in this paper focuses on visualizing 
boundaries and orientations of heterogeneous material, while 
traditional transfer function approaches pay more attention to 
relatively homogeneous material. We endeavor to visualize 
the gradients of scalar fields which imply the orientations of 
materials. The direction of gradients is also referred as the 
orientation of materials in the rest of this paper. 

The presented approach requires a minimum of user 
interaction so that users are released from the monotonous 
work of transfer function specification by iterative trial and 
error in our system. 

In the following section, we describe related works for 
this paper. Then in Section 3, we outline important aspects of 
the orientation visualizing transfer function. Experiment 
results of our approach to several datasets which are 
commonly used in previous publications and discussion are 
presented in Section 4. Conclusions and comments on future 
work are included in Section 5. 

II. RELATED WORKS 
Transfer function specification plays a crucial role in 

volume rendering, and there has been a great amount of 
research devoted to transfer function generation for volume 
rendering [2]. Early trail-and-error approaches which need 
expert intervention in generating the final image are 
unintuitive and time-consuming. Current approaches for 
transfer function specification can be divided into two groups: 
data centric and image centric. While the image-centric 
approaches are based on measuring the rendered image 
quality, the data-centric approaches are based on measuring 
properties in the dataset. 

An approach of semi-automatic generation of transfer 
functions using the first and second derivatives for 
visualizing boundaries between materials was presented by 
Kindlmann and Durkin [3]. Then Kniss et al. [4]  proposed a 
multi-dimensional transfer function which demonstrates 
superior capabilities in classifying boundaries and materials. 
In their solution, interaction widgets were introduced to 
manipulate a 2D histogram of the scalar values and the 
gradient magnitudes for transfer function specification. 
Sereda et al.  introduced LH Histograms [5] and its extension, 
mirrored LH Histograms [6], to identify the materials that 
form the boundaries. Praßni et al. [7] proposed a transfer 
function with boundary detection based on their improved 
LH technique. Correa and Ma [8] described a sized-based 
approach to distinguish features with similar or identical 
intensities by the relative sizes of the features. Later they 
suggested the occlusion spectrum method to classify 
structures by the ambient occlusion of voxels [9]. Curvatures 
have been used to distinguish different structures according 
to their shapes [10] [11]. Praßni et al. [12] used a technique 
to distinguish features in the volume data based on the 
structure shapes such as shapes of longitudinal, surface-like, 
and blobby shapes can be distinguished. 

Designing transfer functions with machine learning 
techniques is a promising research direction [13]. Transfer 
function specification can be regarded as a parameter 
optimization problem where stochastic search techniques can 
be utilized. He et al. [14] showed a genetic algorithms 
approach that starts by an initial population of randomly 
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superior capabilities in providing clear perspectives of 
structures and unique features in visualizing orientation 
related details. With our approach, materials of similar scalar 
values and gradient magnitudes can still be distinguished by 
their orientations, which are denoted by different colors in 
our results. 

The work in this paper exploits the use of both directions 
and magnitudes of gradients to improve the visibility of 
resulting images. Properties such as second derivatives and 
classification information can be taken into account to reveal 
more details and further the visibility of rendering results. 
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