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Abstract. The purpose of this work is to investigate the effect of mechanochemical treatment on Malaysian 
dolomite towards the enhancement of hydrogen production from gasification reaction of oil palm fronds 
(OPF). To accomplish the objective, Malaysian dolomite was subjected to high energy planetary ball mill for 
1, 2 and 4 h in ethanol. The milling process reduced the particle size of the catalysts and consequently 
increased their surface area. The catalytic activity was investigated through temperature programmed 
gasification (TPG). The catalyst premixed with the biomass in a ratio of 1:1 and undergone TPG under partial 
oxygen environment (5% O2 in He) tested from ambient temperature up to 900oC with heating rate 10oC/min. 
All the gases produced were detected by online mass spectrometer. The milled catalysts prominently showed 
the increasing of H2 production together with the reduction of CO2 produced due to the dual function of 
catalysts which acted as tar reduction and CO2 sorbent. 
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1. Introduction 
The increasing of fossil fuel burning on the daily basis for the energy demand had rose a huge concerned 

for the effect on the global warming. This due to the green house gases emitted from the fossil fuels 
combustion. Hence, there is a growing interest in the usage of H2 as a replacement for the fossil fuels. Instead 
of contained high calorific value, the combustion and burning of H2 produced no other than water. Moreover, 
the potential benefits of H2 include [1]: (i) reductions on green house gases emissions; (ii) reduction on urban 
air pollutants; (iii) enhanced energy security; and (iv) increased energy efficiency. Hydrogen derived from 
biomass especially from agricultural waste had attracted so much attention because of the abundant 
availability. This source of energy is the most renewable and sustainable which played the main role 
attributed to the long-lived dependent on H2 energy [2]. Oil palm tree which the main agricultural plantation 
industry in the tropical country like Malaysia has attributed enormous of waste [3]. Oil palm yielded more 
syngas, energy than any other type of biomasses like maize, mangrove wood and food waste [4]. Most of oil 
palm parts can be utilized to produce syngas [5].  

There are several methods that can be used to produce hydrogen from biomass and each of it will differ 
on the gas composition and the quality of gas produced. The most effective ways by employed 
thermochemical process where consists of supercritical water gasification [6], pyrolysis [7], steam 
gasification [8-10] and gasification [11-14].  In order to obtain high production of syngas, gasification suits 
this requirement. The exact gas composition strongly depends on the process conditions especially 
temperature, the gasification agent, feedstock composition and the gasification technologies [15]. The main 
obstacle performing gasification is the formation of tar which only decomposed at high temperature 
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(>1000oC) [15,16]. In this matter, the introduction of catalyst into the system plays a vital role in reduction of 
tar formation. 

Dolomite is a magnesium ore which has chemical formula of CaMg(CO3)2 can be found abundantly in 
the country like Malaysia. Dolomite attracted so much attention due to the ability for tar reduction [11,17,18] 
and CO2 sorbent [16,19,20]. In this work, the evaluation of mechanochemical treatment on Malaysian 
dolomite towards the hydrogen production via gasification of oil palm fronds (OPF) is studied. By 
employing milling process to the dolomite catalysts, the particle size of catalysts reduced consequently 
increased the surface area. However, milling media is the major factor affected the effectiveness of the 
milling process [21]. The use of ethanol as a media is believed to exhibit the dual role of solvent and 
reducing agent [22]. Hence, the benefits from the increased of surface area can be utilized during the 
gasification reaction whereby larger surface area can be provided for the reactant to undergo catalytic 
processes.  

2. Experimental Materials and Method 
Dried oil palm fronds (OPF) was initially ground and sieved to smaller particle size. The ultimate 

analysis is given in Table 1. On the other hand, Malaysian dolomite was obtained from Perlis and composed 
of 39.79% MgO; 38.97% CaO; 0.16% Al2O3; 0.098% SiO2; and 0.08% Fe2O3. Natural dolomite was first 
been calcined at 900oC in static furnace under air environment for 8 h before undergoes milling process. 

Table 1: Ultimate analysis of OPF 

Ultimate analysis wt % 
C 38.16 
H 7.14 
N 0.37 
S 0.74 
O 49.57 

The mechanochemical treatment was carried out by using planetary ball mill (model Pulverissette 4 from 
Fritsch) with an agate ball having 250 ml volume together with fifty 10 mm diameter agate balls. 5 g of 
natural Perlis dolomite and ethanol were put together inside the bowl. The bowl spins around its own axis 
and around second axis outside its centre at 1000 rpm for 1, 2, and 4 h. The milled dolomites were then been 
calcined at 900oC for 4 h. The unmilled dolomite was denoted as CD while the milled calcined dolomites 
were denoted by CDE1, CDE2 and CDE4 indicated to duration of milling which were 1, 2 and 4 h, 
respectively. Catalysts were then characterized using Brunauer-Emmer-Teller (B.E.T) surface area analysis 
model Thermo Finnigan Sorptomatic 1900 series. The morphology of catalysts was determined by X-ray 
diffraction patterns obtained from XRD-6000 Difractometer and field emission scanning electron 
microscopy (JEOL JSM-7600F FESEM) was used to observed the 3 dimensional shape of catalysts.  

Table 2: Reaction equations involved 

Reaction equations ΔHo
298 (kJ mol-1) Equations

CaO + H2O  Ca(OH)2 - 96.6  1 
CnHmOp + (2n-p) H2O  nCO2 + (m/2 + 2n – p)H2 endothermic 2 

Ca(OH)2  CaO + H2O 94.6  3 
CO + H2O  H2 + CO2 - 41.5 4 
CaO + CO2  CaCO3 - 178.2 5 

MgCO3  MgO + CO2 117.0 6 
CaCO3  CaO + CO2 170.5 7 

Biomass + oxidant (O2 , H2O)  H2 + CO + CO2 + CH4 + Tar +  Ash + Char endothermic 8 
 
Approximate weight of catalysts (unmilled and milled dolomite) and OPF were premixed followed the 

ratio of 1:1. Temperature programmed gasification (TPG) was performed by using a ThermoFinnigan 
TPDRO 1110 instrument online with mass spectrometer (Pfeiffer Omnistar) which measured multiple 
masses continuously to detect the product gas composition. The gas mixture of 5% O2 in He was using 
during gasification process with flow rate of 10 ml/min. Gasification of the mixture sample was done at 
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temperature from ambient temperature till 900oC at the heating rate of 10oC/min and was held for 1 h at final 
temperature. The syngas produced was detected by mass spectrometer. All the reaction occurred in this study 
as shown in the Table 2. 

3. Results and Discussion 

3.1. XRD Analysis 
Figure 1 shows the unmilled and milled catalysts for OPF gasification in these studies. The main peaks 

which at angle of diffraction, 2θ = 32o, 37o, 54o, 64o and 67o referred to CaO phase where 2θ = 43o and 62o 
represented to MgO phase. This approved it was a dolomite which mainly decomposed by CaO and MgO 
phase [9]. Remarkably on the calcined dolomite phase after undergone milling process, Ca(OH)2 phase 
appeared at diffraction angle 2θ = 34o,47o and 50o. This may due to the reaction between dolomite and water 
molecule during the milling process (Eq. 1). The milling process attributes to the changes of the xrd patterns 
where the peaks widened compared to the unmilled dolomite indicating the reduction of particle size [23] 
leading to the increment of catalyst surface area.  

 
Fig. 1: XRD diffraction of unmilled and milled dolomite catalysts 

3.2. BET Surface Area 
Table 3 showed the increment of milled catalysts surface area over time of milling process compared to 

unmilled ones. This depicted the abatement of particle size of catalysts. The surface area for 1 h milled 
catalysts increased from 13 m2/g (unmilled dolomite) to 17 m2/g and then further increased to 19 m2/g and 21 
m2/g for 2 and 4 h milling process, respectively. The milling process caused repeated fracture of the solid 
particles at first, followed by diminished particle size and consequently increases surface area of the catalysts 
[21]. 

Table 3: BET surface area of unmilled and milled dolomite catalysts 

Catalysts  Surface Area (m2/g)  
CD  13 

CDE1  17 
CDE2  19 
CDE4  21 

3.3. OPF Gasification 
In the gasification reaction, the equations involved during the reaction as aforementioned in Table 2. The 

overall gasification reaction generally represented as Eq. 8 in which the addition of oxidant may contributes 
to the product-end composition. Fig. 2 and 3 showed the evolution of the product gas spectra during the 
gasification. F was referred to the oil palm fronds undergone gasification without the presence of the catalyst. 
Apparently, the onset temperature was at high of about 450oC. Interestingly, the presence of the catalysts has 
reduced the onset temperature of gasification reaction down to 300oC. This may due to the catalytic cracking 
of the volatile compounds [16] generally represented by the Eq. 2. The similar trend was showed by each 
reaction in the presence of milled dolomite catalysts. The high catalytic activity clearly showed from the 
spectra especially in the range of 500 – 750oC. It is believed that water gas shift reaction (WGSR) played a 
vital role in the system during that time of period. The reaction equation as described by Eq. 4. Although 
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5. Conclusions  
OPF gasification was successfully been evaluated in term of hydrogen production as well as catalytic 

activity. Apparently, higher catalytic activity and H2 production attained in the presence of dolomite catalysts. 
Increased in catalytic activity and H2 production showed when milled catalysts been employed in the system. 
Superior in H2 showed by CDE1 depicted the optimum duration for milling process was 1 h. Moreover, 
remarkably decrement of CO2 production showed by milled catalysts. 
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