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Abstract. Absorption kinetics of long acting insulin such as Glargine often shows significant intra and 
inter-individual variability. To add this variability to the pharmacokinetics model of Glargine, ranges of 
variation for Glargine model parameters were introduced into 1000 Monte Carlo simulations. This 
assessment and analysis portray the likely intra-individual and inter-individual variability that could be 
expected clinically. The Monte Carlo analysis thus defines a range and distribution of identified and validated 
model parameter variations to consider in designing a glycaemic control protocol using Glargine. 
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1. Introduction  
Limited research has been done in terms of modelling the absorption process of Glargine, since its 

introduction in 2000. Pharmacokinetics and pharmacodynamics (PK/PD) modeling analysis have been used 
to support licensing dose of drugs. The FDA (US Food and Drug Administration) states that PK/PD might be 
the supporting evidence of clinical trial efficacy. Hence, there is a definite importance of PK/PD modeling 
with the widespread confidence. To date, only [2, 3] and [4] reported comprehensive pharmacokinetic 
models. [2,3] constructed an extensive physiologically consistent ten-compartment model for the 
pharmacokinetics of several rapid acting, regular and long acting insulins including Glargine. 

Using such deterministic models to determine the pharmacokinetics of insulin, physicians and nurses can 
better overcome barriers to effective glucose management.  The use of model-based methods in Type 1 and 
Type 2 diabetes has shown the potential for developing successful therapeutic methods for effective 
glycaemic control [3]. However, models can not give meaningful prediction or portray the underlying 
physiology unless their parameters are determined and justified with clinical data. In addition, significant 
intra- and inter- patient variability in the PK and PD of insulin offer further barriers to model-based control. 

To capture the dynamics and variability of Glargine's absorption kinetics, this paper presents a robust 
model that accounts for variability seen clinically among patients under Glargine therapy. Intra- or inter- 
individual variation in insulin absorption can range from 35% to 50% [5]. Thus, a robust model will give a 
good prediction and sufficient time for intervention and adjustment of insulin before glucose concentrations 
drift from desired ranges. As a result, hypo or hyperglycaemia can be better avoided. It is intended that this 
subcutaneous absorption model development would eventually offer a safe means to develop and compare 
control algorithms using Glargine prior to clinical testing. 

2. Glargine Compartmental Model 
A four compartment description of subcutaneous insulin kinetics is presented, where Glargine is 

modelled to appear in its precipitate, hexameric, dimeric / monomeric, and (local) interstitium states. The 
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underlying structure of this pharmacokinetics model is adopted from [2, 3]. The model describes the 
pharmacokinetics processes following subcutaneous administration of Glargine: 
Precipitate State:  

)(

)(1

)(
)( ,

max,

,

, tu

tpr
k

tpk
tp glap

gladis

glaprep

glaglaprep
gla +

+

−
=                                                          (1) 

Hexameric State:   
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Dimeric/ Monomeric State:         
)()()()()( ,,,12 tutxktxkktx glamglahgladmddm +++−=                                               (3) 

Interstitium:                                     
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Plasma Insulin:                                    
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where all variables in Equations (1)-(5) are defined in Table 1 and the model’s schematic is in Fig. 
1: 

Table 1: Description of Glargine and Plasma Insulin Model Parameters 
Parameter Description Parameter Description 
xh,gla (t)  Mass in glargine hexameric compt. 

[mU] 
kprep,gla Glargine precipitate dissolution rate [min-1] 

pgla (t)  Mass in glargine precipitate compt. 
[mU] 

k1 Hexamer dissociation rate [min-1] 

xdm(t) Mass in dimer/monomer compartment 
[mU] 

k1,gla Glargine hexamer dissociation rate [min-1] 

xi(t) Mass in the interstitium compartment 
[mU] 

k2 Dimeric/monomeric insulin transport rate into 
interstitium [min-1]    

rdis,max Max glargine precip. dissolution rate 
[mU/min] 

k3 Interstitium transport rate into plasma [min-1] 

utotal,gla(t) Insulin glargine input [mU/min] kd I  Rate of loss from interstitium [min-1] 

up,gla(t)  Glargine precipitate state insulin input 
[mU/min] 

kd Rate of diffusive loss from hexameric and  

dimeric/monomeric state  compartments [min-1] 

uh,gla(t) Glargine hexamer state insulin input 
[mU/min] 

um,gla(t) Glargine dimer/monomer state insulin input 

n Decay rate of insulin from plasma 
[1/min] 

I(t) Plasma insulin [mmol/L] 

αI Saturation of plasma insulin 
disappearance [L/mU] 

mb Body Mass [kg] 

uex Exogenous insulin input [mU/min] Vi Insulin distribution volume [L] 
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Equations (1) and (2) differ from the original non-linear model in [2] and [3] with the introduction of the 
Michaelis-Menten saturation terms in these equations.  The rate of Glargine precipitate dissolution, kprep,gla, is 
a saturable process and is slower with the introduction of the Michaelis-Menten saturation function.  There is 
a need to model this saturation as the solubility of the Glargine precipitate is limited due to the shifted pH of 
Glargine molecules [4]. Glargine injection is completely soluble at a pH of 4.0, and once injected in a neutral 
subcutaneous state with pH 7.4, Glargine is neutralized and formed microprecipitates [10]. Specifically, this 
model adds non-linear transport saturation based on the impact of Glargine molecule's own pH on the 
surrounding depot pH, which limits and extends the process to give Glargine its characteristically flatter 
profile. Hence, the model development with Michealis-Menten saturation has a greater physiological 
relevance. 

 

Fig. 1: Structure of Glargine absorption kinetics model, beginning from subcutaneous Glargine injection, to precipitate 
compartment, pgla (t), hexameric compartment, xh,gla (t), dimeric/monomeric compartment, xdm(t), interstitium, xi(t) and 

finally to the plasma insulin compartment, I(t). 

3. Monte Carlo Study 
Subcutaneous insulin absorption varies from one person to another, and can also be influenced by 

temperature, exercise, depth of injection, and many other insulin-dependent/independent factors [5]. Clinical 
experience has shown that under comparable patient conditions, the same injected subcutaneous dose often 
does not produce the same metabolic effect [1]. To model Glargine absorption variability in this study, 
lognormal distributions in several critical parameters are combined to produce variability matching reported 
ranges in Glargine dose-response studies. Lognormal distributions are used because the varied model 
parameters must be positive, which using a normal distribution does not guarantee. Parameters kprep,gla, k1,gla 

and αgla are the critical parameters given lognormal distribution in this study, producing variations in 
maximal plasma insulin concentrations, Cmax, matching published data. These parameters are critical as they 
partly define the hexameric compartment. The Glargine pharmacokinetic responses are computed for 1000 
Monte Carlo simulations to produce the expected variability distribution. 

4. Results 
The results in Fig. 2 illustrate how Glargine pharmacokinetics parameter variability yields expected 

variability in maximal plasma insulin, Cmax. The range produced in Fig. 2 is the best achieved to replicate the 
reported values of Cmax  by studies in the literature for similar injection doses [6, 7, 8, 9]. For example, a 24U 
of subcutaneous Glargine as reported by [9], has variations of Cmax from 7+1.3 mU/L, and this is presented 
by the boxed area in Fig. 2(b). The range of Cmax  produced covers the reported area. The plot of Cmax is 
expressed as a log normal distribution. This distribution maximizes the likelihood of accounting for 
variability among patients receiving the subcutaneous injection. As absorption rate is dose dependent, where 
a small dose is absorbed faster than a larger dose, the variability of Cmax  as portrayed in Fig. 2 increases at 
higher volume of Glargine injection, as expected. Fig.3 shows the randomly selected model parameter 
variability of the Glargine pharmacokinetics parameters, kprep,gla, k1,gla and αgla for 1000 Monte Carlo 
simulations. The theoretical lognormal functions are also shown in Fig.3.                                                              
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                     (a) 32U                                              (b) 24U                                                     (c) 12U 
Fig. 2: Distribution of maximal plasma insulin concentration, Cmax, computed 1000 Monte Carlo runs with variability 
in kprep,gla, k1,gla and αgla.  Fig.2(a): A 32U dose, boxed area refers to range quoted in [7]. Fig.2(b): A 24U dose, boxed 

area refer to range quoted in [9] and Fig.2(c); a 12U dose. No quoted range [8]. 

 
                                (a)                                                         (b)                                                       (c) 

Fig. 3: Variability of Glargine pharmacokinetics parameters, kprep,gla, k1,gla and αgla computed with 1000 Monte Carlo 
runs as seen in (a), (b) and (c). The darker histogram shows the actual variability while the lighter histogram is the 

theoretical distribution of a lognormal distribution. 

5. Discussion 
Clinical experience has found that subcutaneous administration of insulin does not result in highly 

reproducible metabolic effects, even when the same dose is administered [1]. Thus, designing any protocol 
(clinical or model-based) for efficient subcutaneous insulin dosing in an attempt to achieve good blood 
glucose control has always been a challenge. The major limitation is in the pharmacokinetics profile of 
subcutaneous insulin and its intra- subject variability. Variable absorption and day to day variability are 
major factors that contribute to the instability of resulting intra-subject glycaemic levels. Glargine, in 
comparison to other long acting basal analogues, like NPH and Ultralente, has the lowest reported 
intrasubject variability [10]. However, its variability is still considered a significant aspect in insulin 
treatment, affecting glycaemic control and the risk of developing hypoglycaemia [11]. 

A reliable system for insulin dosing should thus be able to consider all sources of variation. The decision 
to vary only three model parameters, kprep,gla, k1,gla and αgla is deemed sufficient, as these parameters most 
influence the modelled variability of Glargine absorption kinetics. In addition, they are Glargine-specific 
parameters and their variability is thus independent, in this model, of other insulin types, which may have a 
different variability for the same subjects. Physiologically and clinically, the rate of dissolution and 
absorption of Glargine can be affected by the state of Glargine forming an amarphous microprecipitate at the 
injection site. The resulting observed and considerable variability of insulin action is considered here with a 
Monte Carlo analysis. 

The outcomes of the Monte Carlo analysis portray the likely intra-individual and inter-individual 
variability of maximal plasma insulin concentrations, Cmax that could be expected clinically. Thus, the result 
of the Monte Carlo analysis defines a range of distribution of variation to consider in designing a glycaemic 
control protocol using Glargine. These ranges are seen to (broadly) capture those reported in the literature, 
further validating the overall model and approach. Hence, the main target is to develop control protocol that 
would be feasible to all the variations often see among patients. Specifically, by defining what might be 
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expected, the overall glycaemic control system model can be adapted to the observed insulin variability 
encountered clinically among patients. More importantly, such validated model variations may also be used 
to aid therapy selection and decision support [12]. The ability to predict subcutaneous insulin absorption 
using these results based on glycaemic response at the bedside would thus allow further patient-specific 
optimization of insulin treatment, with the potential to reduce or better manage the patient-specific outcome 
glycaemic variability. 

6. Conclusion 
The impact of maximal plasma insulin’s, Cmax variability, assessed with Monte Carlo increases the 

potential of the subcutaneous absorption model to be used effectively in a Glycaemic control protocol. The 
resulting Glargine absorption time-action with expected variability seen intra- and inter- individually would 
help in designing dosage regimens.  Understanding the pharmacokinetic properties of insulin is one of the 
major sources in dosage designs. It is intended that this model development with introduced parameter 
variability would eventually offer a safe means to develop and compare control algorithms for the less 
critically ill patients, prior to a clinical testing. 
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