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Abstract. Root-mean-square-deviation (RMSD) is the most widely used measure of the similarity of 
superimposed protein structures, but it is sensitive to outliers and a smaller RMSD value may not correspond 
to a better structure superposition. Many alternative measures have been proposed to overcome the 
deficiency in RMSD. In this paper, we extend the RMSD to normalized weighted RMSD (nwRMSD) to 
measure the quality of superimposed structures, where the nwRMSD assigns a normalized weight to each 
superimposed position. We present an iterative algorithm to minimize nwRMSD for structure superposition 
and propose a new weight function for structure superposition. We show that NMR ensembles minimized by 
the nwRMSD measure can clearly display structurally conserved and flexible regions, which are better than 
the superposition in original structures. 
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1. Introduction 
Protein structure comparison is an important research topic in the area of bioinformatics and 

computational biology. It can be classified into two categories: structure alignment, which compares the 
similarity of different protein structures, and structure superposition, which compares the similarity of 
different conformations of a protein structure. Protein structure alignment is useful in classifying protein 3D 
structures, identifying structure conserved regions, and disclosing evolutionary relationship of proteins [14, 
15]. Protein structure superposition is useful for evaluating the quality of predicted protein models [11], 
assessing the precision of NMR ensembles [22], and identifying structurally conserved or flexible regions [7]. 

Root-mean-squared deviation (RMSD) is the most widely used measure for comparing protein structures. 
In structure superposition, we usually assume structures as rigid bodies, minimize the RMSD by translating 
and rotating the structures in 3D space, and then measure the similarity. For a pair of superimposed 
structures, we measure the average distance of all point pairs. For multiple superimposed structures, we 
measure the average distance of point pairs in all structure pairs, where there are n(n–1)/2 pairs for n 
structures. 

One deficiency with RMSD is its sensitivity to outliers, in which case a single outlier may cause a 
significant increase of the RMSD. The outliers may be caused by experimental errors or conformational 
changes of structural flexible regions. For structure superimposition, in the former case we definitely want to 
remove the effects of the outliers, and in the latter case we still want to reduce the effects of outliers in order 
to identify structurallyconserved or flexible regions. 

Many RMSD-based or alternative methods have been proposed to overcome the deficiency in RMSD. 
Depending on criteria used for minimizing the structure superposition, these methods can be classified into 
four categories:distance-cutoffmethods, number-cutoffmethods, position weights based methods, and others. 
Distance-cutoff methods minimize superimposed structures by considering only the point pairs whose 
distances are below a threshold value. For example, GDT algorithm (Global Distance Test) [23] uses an 
exhaustive search algorithm and finds a largest set of point pairs whose distances are within a threshold value 
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x and records the RMSD of the set of point pairs as GDT_Px. The GDT_TS score, (GDT_P1 + GDT_P2 + 
GDT_P4 + GDT_P8) / 4, becomes a standard in comparing the similarity of a predicted protein model to an 
experimentally determined structure. MaxSub [19] minimizes the superposition of various continuous 
segments of L pairs, then extends each segment to include other point pairs within a threshold value, and 
finally outputs a superposition with the most point pairs. Snyder and Montelione [20] identify a set of core 
atoms, partition the core atom set into several RMSD-stable domains, minimize each RMSD-stable domain, 
and calculate the RMSD for each domain. Remington and Matthews [17] and Aleksandrov et al. [1] analyze 
the statistical distribution of RMSD and choose distance-cutoff ranges that are statistically significant to the 
lengths of proteins. Maiorov and Crippen [13] choose a distance-cutoff range when the original RMSD is 
smaller than the RMSD with one structure reflected. 

Number-cutoff methods minimize structure superposition by choosing a fixed number of point pairs with 
the smallest distances. For example, rmsdL [4] calculates the smallest RMSD for L point pairs.The algorithm 
suggests to use rmsd100 as a normalized and size-independent measurement, where100 is the mean number of 
amino acids per domain. 

Position weight based methods assign a weight to each superimposed position and iteratively adjust the 
weights until the superposition converges. For example, Gaussian-weighted RMSD [6] presents a weight 
function cd

k
kew /)( 2−= , where dk is the distance of a point pair at a superimposed position k and c is an 

arbitrary scaling factor. Wang and Snoeyink [21] present a weight function inverse to the average distance of 
all point pairs in superimposed positions. 

Some methods use other measures to replace the RMSD. For example, AL0 [23] calculates the number 
of atom pairs within a 5Å distance threshold using a LGA sequence independent superposition algorithm. 
MAMMOTH z-score [16] finds the largest subset of similar local structures by the MAMMOTH alignment 
algorithm and calculates the probability of proportion of superimposed residues. Similarly, Dali z-score [8] 
finds the largest subset of similar local structures by the DALI algorithm and calculates the z-score. TM-
score function [10] measures the inverse of the squared distance of an atom pair and generates a structure 
similarity score.Least median of squares regression [12, 18] minimizes the median of squared distances 
instead of the sum of squared distances in the RMSD. 

In this paper, we introduce a new measure called normalized weighted RMSD (nwRMSD), which is 
extended from weighted RMSD with position weights [21], to minimize the structure superposition. 
Although the weighted RMSD with position weights can reduce or remove the effects of outliers, it fails at 
quantifying the similarity of superimposed structures on an absolute scale. For the multiple structure 
superposition, we present an efficient iterative algorithm, which is extended from Wang and Snoeyink [21], 
to minimize the nwRMSD given any convergent weight function. 

Furthermore, we propose a new weight function for quantifying the similarity of superimposed structures. 
We test on NMR ensembles and compare it with the ensembles optimized by standard RMSD and those used 
by the Protein Data Bank (PDB) [3]. The results show nwRMSD performs better in displaying structurally 
conserved or flexible regions of NMR ensembles than standard RMSD andoriginal PDB ensembles. 

2. Methods 
In this section, we present the normalized weighted RMSD and its properties, an algorithm to minimize 

superimposed structures given fixed position weights, and an algorithm to minimize superimposed structures 
given a convergent weight function. 

2.1. Properties of the normalized weighted RMSD 
We assume there are n structuresSi for (1 ≤i≤n). Each structure Si has m points (atoms)pi1, pi2, …, pim. For 

a fixed position k,we assume the n points pik for (1 ≤i≤n) correspond. We assign a position weight wk≥ 0 to 
each superimposed position k that ∑ ୀଵݓ  0  and define a normalized position weight ݓෝ ൌ ݓ݉ ∑ ⁄ୀଵݓ  (note that ∑ ෝୀଵݓ ൌ ݉). We define a weighted average structure ܵҧ to have points ҧ ൌ ∑ ୀଵෝݓ ∑ ⁄ෝୀଵݓ  for (1 ≤k≤m). Since ∑ ୀଵෝݓ ∑ ⁄ෝୀଵݓ ൌ ∑ ୀଵ ݊⁄ , the weighted average 
structure is the same as an average structure. 
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We define a normalized weighted root mean squared deviation (nwRMSD) as a square root of 
normalized weighted sum of all squared distances of structures: ට∑ ∑ ∑ ෝฮݓ െ ฮଶୀଵିଵୀଵୀଶ ቀሺିଵሻଶ ∑ ෝୀଵݓ ቁൗ  = ට ଶሺିଵሻ ∑ ∑ ∑ ෝฮݓ െ ฮଶୀଵିଵୀଵୀଶ , where 

there are n(n–1)/2 structure pairs in total and each pair has a normalized weighted sum of squared distances: ∑ ෝฮݓ െ ฮଶୀଵ ∑ ෝୀଵൗݓ  = ∑ ෝฮݓ െ ฮଶୀଵ ݉ൗ . Since m and n are fixed and the square root 
function is monotonically increasing, we use the weighted sum of all squared pairwise distances ∑ ∑ ∑ ෝฮݓ െ ฮଶୀଵିଵୀଵୀଶ  instead of nwRMSD. 

We can easily obtain the standard RMSD from nwRMSD by assigning all position weights to 1, i.e. ݓ ൌ ෝݓ ൌ 1 for (1 ≤k≤m). By using weights, we can reduce or eliminate the effects of outliers by assigning 
higher weights to those structurally inflexible regions and lower weights to structural flexible regions or 
outliers. 

2.2. Algorithm for minimizing nwRMSD with fixed position weights 
We take each structure as a rigid body and allow translating and rotatingall the structures in minimizing 

nwRMSD. For each structure Si, we define Ri as a 3×3 rotation matrix and Ti as a 3×1 translation vector. We 
use the target function argminோ,் ቀ∑ ∑ ∑ ෝฮܴݓ െ ܴ െ ܶ െ ܶฮଶୀଵିଵୀଵୀଶ ቁ  and aim to find the 
optimal Ti and Ri for each structure that minimize the function. 

To minimize the superposition of two structures by nwRMSD, we can extend Horn’s method [9] to 
translate a weighted centroid of each structure to the origin and then apply an optimum rotation for one 
structure. We leave the proof out as it can be easily obtained from Horn’s analysis by adding weights to all 
terms. 

We present an iterative algorithm that minimizes the nwRMSD for multiple structures, which is also 
extended from Wang and Snoeyink [21]. The algorithm repeatedly minimizes nwRMSD from each structure 
to the average and recalculates a new average until the nwRMSD converges to a local minimum. 

Algorithm 1. Given naligned structuresSi for (1 ≤i≤n), where each structure has m points (atoms) and 
each aligned position has a wkfor (1 ≤k≤m), minimize the nwRMSD to within a threshold value ε (e.g. ε = 
1.0×10–5). 

1. Translate a weighted centroid of each structure Si  for (1 ≤i≤n) to the origin. 
2. Calculate the average structure ܵҧ  with points ҧ ൌ ∑ ୀଵ ݊⁄  and deviation ܵܦ ൌ ∑ ∑ ෝԡݓ െ ҧԡଶୀଵୀଵ . 
3. For each Si (1 ≤i≤n), superimpose it toܵҧ  using Horn’s method that minimizes ∑ ෝԡܴݓ െୀଵҧԡଶwith an optimum rotation matrix Ri. Replace Si

new = Ri×Si. 
4. Calculate a new average ܵҧ୬ୣ୵ and deviation ܵܦ ൌ ∑ ∑ ୬ୣ୵ෝԡݓ െ ҧ୬ୣ୵ԡଶୀଵୀଵ . 
5. If SD – SDnew<ε, then the algorithm terminates; otherwise, set SD = SDnew and ܵҧ ൌ ܵҧ୬ୣ୵ and go to 

step 3. 
Similar to the analysis in Wang and Snoeyink [21], from Horn [9], in step 3 we 

have:∑ ∑ ୬ୣ୵ෝԡݓ െ ҧԡଶୀଵୀଵ  ∑ ∑ ෝԡݓ െ ҧԡଶୀଵୀଵ ൌ  .ܦܵ
In step 4 we have:ܵܦ୬ୣ୵ ൌ ∑ ∑ ୬ୣ୵ෝԡݓ െ ҧ୬ୣ୵ԡଶୀଵୀଵ  ∑ ∑ ୬ୣ୵ෝԡݓ െ ҧԡଶୀଵୀଵ  
So SDnew≤SD andSD decreases in each iteration. The algorithm stops when SD – SDnew is less than the 

threshold valueε; which means SD reaches a local minimum. 

2.3. Algorithm for optimizing structure superposition 
Algorithm 1 minimizes nwRMSD if all position weights are fixed, but one bigger problem is how to 

minimize nwRMSD if position weights change. If we already know a weight function f(k) for (1 ≤k≤m) that 
assigns higher weights to better superimposed positions and lower weights to outliers, then we could use the 
following heuristic algorithm to optimize structure superposition. 

Algorithm 2.Given naligned structuresSi for (1 ≤i≤n), where each structure has m points (atoms), 
optimize the structure superposition based on weight function f(k) for (1 ≤k≤m). 
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1. Set all wk = 1 for (1 ≤k≤m) and minimize SD of the protein structures using the Algorithm 1. 
2. For each aligned position k, calculate and set wk

new = f(k) and minimize SDnew using Algorithm 1. 
3. If SD – SDnew<ε (e.g. ε = 1.0×10–5), then the algorithm terminates;  

otherwise set SD = SD new and go to step 2. 
AsSD≥ 0 and SD decreases in steps 2 and 3, Algorithm 2 will eventually stop. 
Note that convergence of Algorithm 2 depends on the weight function. If a weight function tends to 

assign higher weights to outliers, then although the SDnew>SD in step 2 and the algorithm exits in step 3, the 
nwRMSD never converges. So we should carefully choose a weight function to make the convergence for 
Algorithm 2. 

3. Results and Discussion 

3.1. nwRMSD weight function examples and comparison 
We choose a weight function ݓ ൌ 1 ൫݈݃൫݀ଷ  1൯  ܿ൯⁄ , where c is a non-negative constant (c = 0.2 

in the experiments), and use it to optimize structure superposition. The inverse of dk
3 allows us to assign 

higher weights to better superimposed positions and the constant c allows us to avoid the influence of certain 
positions with extremely small dk

3. We use Algorithm 2 to minimize the nwRMSD. 
We test the weight function on 14 NMR structure targets in CASP8 and compare the results to both the 

superposition by standard RMSD and the one used by the PDB [3].Since both PDB and nwRMSD emphasize 
the superpositionof structural conserved regions and ignore flexible regions to remove the effects of outliers, 
the RMSD values by the PDB and nwRMSD are similar to each other and are significantly higher than 
standard RMSD. Figure 1 shows the NMR ensemble of T0472 (2K4M). We can see that the ensembles 
optimized by the PDB and nwRMSD are significantly better than optimized by RMSD and the ensemble by 
the nwRMSD is slightly better than the one by the PDB. 

4. Conclusions 
In this paper, we present a measure called normalized weighted RMSD, which allows us to directly 

compare different nwRMSD values in structure superposition, and propose a new weight function. The 
results show that the nwRMSD with the weight function performs well. The rankings of predicted structure 
models in CASP7 and CASP8 targets are comparable to expert rankings and are better than most of existing 
measures. 
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Fig. 1: The superposition of NMR structure target T0472 (2K4M) by standard RMSD, original PDB, and nwRMSD. 
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