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Abstract. Recent advances in microarray technology offer the ability to study the expression of thousands 
of genes simultaneously. The DNA data stored on these microarray chips can provide crucial information for 
early clinical cancer diagnosis. The Principal Orthogonal Decomposition (POD) method has been widely 
used as an effective feature detection method. In this paper, we present an enhancement to the standard 
approach of using the POD technique as a disease detection tool. In the standard method, cancer diagnosis of 
an arbitrary sample is based on its correlation value with the cancerous or normal signature extracted using 
the POD method on DNA microarray data. In this paper, we extend the POD method by feeding the extracted 
principal features into Machine Learning algorithms to detect cancer. Particularly, Linear Support Vector 
Machine, Feed Forward Back Propagation Networks, and Self-Organizing Maps have been used on liver 
cancer, colon cancer, and leukemia data. Sensitivity, specificity, and accuracy have been used as a mean to 
evaluate predictive abilities of the proposed extended POD methods. Our results indicate overall the 
proposed methods provide slight improvements over the standard POD method. 
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1. Introduction  
Expressions of thousands of individual genes can be stored in a DNA microarray, which allows one to 

see genes that are induced or repressed in an experiment. Signatures of a cancer may be encrypted in DNA 
microarrays, and once found, can be used for diagnoses. The standard Principal Orthogonal Decomposition 
(POD) method had been used to effectively detect liver and bladder cancers [1]-[2]. In this paper, we 
proposed to extend the standard Principal Orthogonal Decomposition (POD) method to include Machine 
Learning (ML) algorithms for cancer detection. Namely, we use the POD technique to extract the principal 
features, both cancerous and normal. We then feed them to ML algorithms such as the Support Vector 
Machine (SVM), Feed Forward Back Propagation Networks (FFBPN) and Self-Organizing Map (SOM) to 
train the classifiers for detection of different types of cancers.  

2. Predictive Classifiers using the Extended POD Methods 
Given a cancer training set CN
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The following Machine Learning algorithms are used to construct classifiers F based on the values of 
NC NN
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=1}{ the test sets of cancer, normal, and both, respectively. For each member of the testing 

set, we define the corresponding metric 
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2.1. Linear Support Vector Machine 
Since we perform our projections onto the dominant cancer and normal POD features, the hyper-plane is 

two dimensional and SVM draws a contour between the cancerous and normal classes [3]. For simplicity, we 
assume that the training data is linearly separable and utilize a linear SVM. The SVM algorithm constructs 
the line bmxy +=  that maximizes the margin between the positive and negative groups. In this case, the 
classifier is given by   
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2.2. Feed Forward Back Propagation 
For the Feed Forward Back Propagation Network (FFBPN), we assume a simple, single layer perceptron 

with two inputs and one output (see [4] for more details). The FFBPN is constructed using the MATLAB 
command “newff”, where the weights  ),( 21 ww  and the bias parameter θ  are found based on the training 
sets. The network architecture is activated by a hyperbolic tangent sigmoid function,  
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Note that the cut-off value cutoffτ  is determined from the Receiver-Operating-Characteristic (ROC) curve 
described in Section 2.5.   

2.3. Self-Organizing Map 
SOM starts out with an initial two-dimensional map and, when introduced to the training set, it updates 

the map iteratively to fit the distribution of the clusters in the training set. When a testing set is fed into the 
map, the map classifies it according to its nearest cluster of the training set. We implement the SOM scheme 
using all four neighborhood functions (Bubble, Gaussian, Cut-Gaussian, and Epanechicov) sequentially to 
exhaust all possible maps. Both the batch and the sequential training algorithms are also explored in this 
study. SOMs are implemented using the somtoolbox (see [5] for further details).  

2.4. Performance Measures 
Sensitivity, specificity, and accuracy are used to determine the performance of classifiers in this study. 

Sensitivity measures the ability to correctly identify those with the disease, whereas specificity measures the 
ability to identify those without the disease. Accuracy shows the ratio of true predictions (true positives and 
true negatives) out of all predictions. For all test set predictions, the number of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN) are determined. Sensitivity, specificity, and 
accuracy are evaluated to determine the quality of the network: 
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2.5. Cut-off Thresholds 
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Note that our predictive non-binary classifiers, such as those using the standard POD and the FFBPN, 
produce output that varies from 0 to 1. To produce a meaningful cut-off threshold τ , we exhaustively search 
a value between 0 and 1 with small increments that attains the highest fitness. In our case the fitness value, 
based on the interest of the ROC curve, is defined as  

)y(Specificit)y(Sensitivit)( τττ ×=fitnessf .     (6) 

3. Data Sets 
For liver cancer detection, we examined the DNA microarray data from reference [6]. The data, 

containing both normal and cancerous tissues, are obtained from the Stanford Microarray Database at 
genome-www5.stanford.edu. Only genes with expressions in over 80% of the samples are included. Missing 
data for a particular gene are imputed with the average of the values for that gene from the other samples. 
The liver cancer data set contained data from 76 normal tissue samples and 105 primary liver cancer samples, 
where data for 5520 genes are extracted. 

For colon cancer detection, we examined DNA microarray data from reference [7]. Colon cancer data 
consisted of 40 cancerous samples and 22 normal samples. Samples are taken from epithelial cells of colon 
cancer patients. The original data contained 6000 gene expression levels. Only 2000 gene expression levels 
are used based on the confidence in the measured expression levels.  

For leukemia detection, we examined DNA microarray data from reference [8]. Leukemia data consisted 
of 48 samples of Acute Myeloid Leukemia (AML) and 25 samples of Acute Lymphoblastic Leukemia (ALL). 
The measurements are taken from 63 bone marrow samples and 10 peripheral blood samples. Data for 7129 
gene expression levels are extracted.  

Mean values for each gene are subtracted off before selecting the most prominent genes for performing 
the orthogonal decomposition for all data. We define the Signal-to-Noise ratio for each gene g  as 
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We sort the SNR values for the genes in descending order and select only the genes with the highest 
SNR score for our analyses.  

4. Methods 
The top 10 prominent genes with the highest SNR scores are used for analysis. Samples are randomly 

partitioned into training and testing sets. Training sets consist of 90% of cancerous samples and 90% of 
normal samples. The remaining samples are used for testing. The projections onto the POD cancer and 
normal features are normalized from 0 to 1 and cut-off thresholds are selected to obtain maximum fitness (6). 

Predictions for the testing set are made using the highest fitness value defined in equation (6). Training, 
validation and testing processes are repeated multiple times with randomly selected partitions. Averaged 
sensitivity, specificity and accuracy from these predictions are recorded.  

5. Results 
Results from machine learning techniques demonstrate slightly improved predictions when compared to 

the standard POD method. A study [9] using SVM and SOM without POD on colon and leukemia cancers 
has been compared to our proposed methods. Our methods produce better results (+90% versus +70%); 
however, there are different assumptions such as hold-out percentages (10% vs 50%) for training and testing. 

5.1. Liver Cancer Data 
POD feature extraction for one trial is plotted in Figure 1. The horizontal axis is the case number and the 

vertical axis represents its projection value. Cancerous and normal samples are numbered 1-105 and 106-181, 
respectively. The cut-off points are drawn as a horizontal line along the plots for each projection in Figure 1. 
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A large percentage of projections from cancerous tissue samples exceeded this cut-off. Similarly, a large 
percentage of projections from normal tissue samples are less than this cut-off. In this case, the standard 
POD method performs rather well as a predictive classifier. The ROC curve for training data using POD 
cancerous feature (blue), POD normal feature (green), and FFBPN (red) are shown in Figure 2. Points with 
the largest fitness values are circled and the corresponding cut-off thresholds are used for predicting the test 
set. In addition, we find from Figure 2 that while the FFBPN obtains a smaller false positive rate than the 
POD normal feature, it obtains a higher true positive rate than the POD cancer feature. The SOM method, 
displayed in Figure 3, indicates distinct cancerous and normal clusters. Labeled neurons show that only a 
small percentage of the map neurons have predictive capabilities prior to pruning. The SVM hyper-plane, 
shown in Figure 4, is constructed using the training set, denoted with red and green. Test data is denoted in 
magenta and cyan. Average accuracies for five random trials and all classifiers are shown in Table 1. 

5.2. Colon Data 
Prediction results from test data using our proposed methods are recorded in Table 2.  Accuracy for our 

proposed extended POD methods exceed the recognition rate for SVM and SOM methods described in [9].  
This suggests that the use of the POD as a pre-processing to the ensemble classifiers [9] may improve their 
overall accuracy. 

5.3. Leukemia Data 
In this data set, there are no normal samples and the classes are AML and ALL. Here we treat the ALL 

samples as if they are normal samples. Results from AML and ALL predictions are shown in Table 3. 
Accuracy of POD predictions improved only slightly using machine learning techniques. Accuracy for this 
data using SVM and SOM pre-processed with POD exceed recognition rate for feature selection methods 
proposed in [9]. Furthermore, using POD feature reduction to pre-process this data obtains slightly better 
results to a majority vote ensemble classifier [9] (97.8% versus 97.1%). 

6. Conclusion 
The resulting average sensitivity, specificity, and accuracy across all three data sets suggest that the 

proposed method is reliable for only particular data. However, the proposed method achieves over 90% 
accuracy with various classifiers and for a variety of data. Such high recognition rates for predictions pre-
processed with POD suggest that introducing POD for use in ensemble classifiers may improve accuracy for 
general cancer detection [9]. 
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9. Tables and Figures 

 

Fig. 1: Normalized data plotted with cutoffs. 

 

Fig. 2: ROC curve for normalized POD predictions and 
with FFBPN predictions. Points with max fitness are 

circled. 

 

Fig. 3: SOM for Liver Cancer Data before pruning. 

Left: Umatrix of Liver data clustering where 
red=“tumor” samples, and green=“normal” samples. 

Right: Neuron Labels 1=”tumor”; 2=”normal” 

 

Fig 4: Hyper-plane separating tumorous and normal 
samples. 

Table 1: Average accuracy measurements for liver 
cancer test set predictions over 5 trials 

Measure 
Method 

POD 
cancer

POD 
normal FFBPN  SOM SVM 

Sensitivity 0.9518 0.9620 0.9618 0.9676 0.9520

Specificity 0.9475 0.9654 0.9661 0.9800 0.9789

Accuracy 0.9502 0.9636 0.9637 0.9726 0.9636

Table 2: Average accuracy measurements for colon test 
set predictions over 100 random trials 

Measure 
Method 
POD 
cancer 

POD 
normal FFBPN SOM SVM 

Sensitivity 0.8050 0.8638 0.8613 0.8287 0.9293

Specificity 0.8541 0.8447 0.8640 0.7559 0.7587

Accuracy 0.8218 0.8567 0.8621 0.8029 0.8687

Table 3: Average accuracy measurements for leukemia 
test set predictions over 100 random trials 

Measure 
Method 
POD 
cancer

POD 
normal FFBPN SOM SVM 

Sensitivity 0.7905 0.9695 0.9570 0.9740 0.9870

Specificity 1.00 0.9700 0.9950 0.9833 0.8583

Accuracy 0.8628 0.9713 0.9710 0.9779 0.9453
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