FREEZE RECOVERY AND NITROGENASE ACTIVITY IN
ANTARCTIC CYANOBACTERIUM NOSTOC COMMUNE

Rajan Kumar Gupta

1Department of Botany, Pt. L.M.S. Govt. P.G. College, Rishikesh 249201 (Dehradun), Uttarakhand, India
e-mail: rajankgupta1@rediffmail.com

Abstract. Cyanobacteria, especially terrestrial forms, are exposed frequently to alternating freeze-thaw cycles during the early spring and late fall seasons in Antarctic regions. However, the question of how cyanobacteria respond to freezing has received little attention. In order to study the freezing recovery and its impact on Nitrogenase activity in the dominant cyanobacterium in the region Nostoc commune was cultured and propagated on sand with aqueous N-free BG-11 medium. Laboratory experiments were conducted to characterize the in vivo freeze recovery physiology of nitrogenase activity. Nitrogenase activity was monitored by the acetylene reduction activity. Frozen Nostoc mats were thawed and warmed to 2, 4, 6, 8, 10, 20, or 25°C, nitrogenase activity was detected within 6h after thawing. Optimum thawing temperature with respect to the recovery of nitrogenase activity was 20°C. In Subsiquent experiments, laboratory grown Nostoc mats were used along with the following conditions: prefreezing treatment of 3d of exposure to light or darkness, freezing and then thawing to 20°C in light or darkness, with or without DCMU or chloramphenicol. Approximately 25% of the energy in the initial recovery of nitrogenase activity (up to 12 h after thawing) appeared to be supplied via the utilization of carbon compounds stored before freezing. Photosynthetic condition (i.e., light and without DCMU) were necessary for maximum recovery of nitrogenase activity. In the presence of protein synthesis inhibitor chlorphenicol, nitrogenase activity was still detected at 12 to 48h after thawing. Although damage may occur to nitrogenase, some of the enzyme was capable of surviving the freeze-thaw period in vivo. However, complete recovery of nitrogenase activity (equal to prefreezing activity) may entail some de novo synthesis of nitrogenase. This work is supported by the Department of Ocean Development, New Delhi and NCAOR, Goa, India by providing me an opportunity to visit the Antarctic field during XIth and XIVth Indian Scientific Expeditions to Antarctica and collect the samples.

Key words: Cyanobacteria, Antarctica, Nitrogenase, Nostoc

1. Introduction

Cyanobacteria, especially terrestrial forms, are exposed frequently to alternating freeze-thaw cycles during the early spring and late fall seasons in Antarctic regions. However, the question of how cyanobacteria respond to freezing has received little attention. Ono and Murata (1981 a, b) investigated the effect of chilling on the photosynthetic activities of Anacystis nidulans. They noted that both the dark reactions and primary photochemical reaction are damaged by chilling treatment. They correlated the chilling susceptibility with the fluidity of membrane lipids. Increased membrane permeability, as measured by leakage of potassium ions and other ions from the cytoplasm to the surrounding medium, was attributed to an altered state of cytoplasmic lipids at chilling temperatures (Ono and Murata 1982). This loss of ions then resulted in an inactivation of photosynthesis.

The effects of freezing on nitrogenase activity has been only studied with nitrogenase extract preparation. Haystead et al (1970) showed that nitrogenase activity in extracts of Anabaena cylindrica reapidly decreased when incubated at 0°C. After 12d at 0°C, there was 61.7% inhibition of nitrogenase activity when compared with control samples (20°C). In initial studies on crude extracts of Clostridium sp, Dua and Burris (1963) reported an inactivation of approximately 85% after 12 at 0°. Zumft and Mortenson (1975) have the data on the cold lability of nitrogenae (specifically the azoferodoxin protein component).
They postulated the possibility of structural changes in protein at lower temperature. There have been no reports describing the effects of freezing on \textit{in vivo} nitrogenase activity in cyanobacteria or the ability of \textit{in vivo} nitrogenase activity to recover from freezing.

In this study, we examined the recovery response of \textit{in vivo} nitrogenase activity after a freeze period as to the energy source(s) involved, recovery of preexisting enzyme versus \textit{de novo} synthesis, and the effect of prefreezing conditions.

2. Material and Method

2.1. Culture conditions

The cultures of \textit{N. commune} was propagated on sand with aqueous modified BG-11 medium (N-free) in glass petri dishes (80 mm diameter). Several attempts were made to isolate heterotrophic diazotrophs associated with the colonies by plating the colonies on various media selective for heterotrophic diazotrophs. All these attempts proved negative. Furthermore, no sustained nitrogenase activity occurred in the dark with the algal mats. From this we concluded that no contaminating heterotrophic diazotrophs were present. The cultures were grown on Petri dishes placed under a light bank of continuous cool day light fluorescent tubes (50 μE/m2/s). Sand was used as a substratum because it is biologically inert material. Also, using sand, an aqueous medium could be added as needed and therefore eliminate the need for successive transfers (as with the use of an agar medium). The use of an aqueous medium in a simulated terrestrial system also facilitated the use of metabolic inhibitors.

2.2. Experimental conditions

All light treatments were performed in an incubator continuously illuminated with cool day light fluorescent tubes (50 μE/m2/s) maintained at 14\pm1$^\circ$C. Dark treatments were performed in the same incubator in Petri dishes which were wrapped with aluminium foil. The plates were exposed to either light or darkness or 3 d before freezing. The algal mats were then frozen for 3-7 d at -14$^\circ$C. Preliminary experiments showed that the duration of freezing between 1 and 20 d had no effect on the recovery of \textit{in vivo} nitrogenase activity. Also, our study was focussed on freeze recovery and not chilling injury. Thus, we wanted complete freezing of the \textit{N. commune} mats. At the beginning of thawing, colonies were exposed to light or darkness alone or with exposure to metabolic inhibitor, the thawing time equilibration to ambient temperature was approximately 20 min.

2.3. Metabolic inhibitor

3-(3,4 dichlorophenyl)-1,1-dimethyl urea (DCMU) was used to inhibit photosynthesis. DCMU was added to experimental cultures to yield a final concentration of 2 μM. Protein synthesis was inhibited with chloromaphenicol added to the experimental cultures to yield a final concentration of 50 μg/ml.

2.4. Acetylene reduction assay for nitrogenase activity

Colonies were separated from substratum, rinsed in the medium and placed in vacutainer tubes (7.5ml). The tubes were fitted with rubber stopper and injected with acetylene to produce 10-12% acetylene atmosphere in the head space. The tubes were incubated in light at indicated temperatures (see results) for 1 h. Ethylene produced was quantified with Tracor model 540 gas chromatograph with dual columns (2mm by 2m) of Porapak R and flame ionization detector. Column injector and detector temperature were maintained at 50$^\circ$C.

3. Results

3.1. Freeze recovery of nitrogenase activity

The purpose of the experimentation (Fig 1) was to determine at what temperature the greatest recovery of nitrogenase activity could be achieved. The experiments were performed for maximum nitrogenase activity in subsequent experiments. The amount of nitrogenase activity was greatest when colonies were thawed to 20$^\circ$C. On the basis of these results, the mats were thawed to 20$^\circ$C in all subsequent experiments.
Exposure to light during the thawing period enhances the recovery of nitrogenase activity (Fig 2). Colonies thawed during the light recovered detectable nitrogenase activity by 6 h, followed by a rapid increase in activity. As a control for each experiment shown in Fig 2, each set was analyzed for nitrogenase activity just before freezing (i.e., after the light or dark prefreeze treatment) to determine the time involved for freeze recovery nitrogenase activity to achieve the level of prefreeze nitrogenase activity. The control for the cultures pretreated in the light and thawed in light showed prefreezing nitrogenase activity of 1.6 μmol of C₂H₄/mg chl a/h. Freeze recovery nitrogenase activity equaled this prefreeze activity by 24-36 h after thawing.

Cyanobacterial mat thawed in the dark (with a light prefreeze treatment) displayed nitrogenase activity at 12 h (Fig 2) which was equal to 25% of the nitrogenase activity at 12 h of mats thawed in light. Negligible nitrogenase activity was measured from 24-72 h after thawing. After exposure to light at 72 h, nitrogenase activity began to increase rapidly. The prefreeze (control) nitrogenase activity of these cultures was 1.63 μmol of C₂H₄/mg chl a/h. Freeze recovery nitrogenase activity equaled this prefreeze activity by ca 36 h after exposure to light.

The above procedure was repeated except that colonies were kept in the dark for 72 h before freezing. This dark period was utilized to deplete the cells of stored carbon compounds (Lex and Stewart 1973), normally used as an energy or reductant source. After the 72 h dark prefreeze treatment, nitrogenase activity in the colonies was undetectable. Upon thawing, recovery of nitrogenase activity was much lower (Fig 2) than when cultures were exposed to light 3 d before freezing and thawed in light.

3.2. Effect of metabolic inhibitor on recovery of nitrogenase activity

Fig 3 shows the effects of the metabolic inhibitors on the nitrogenase activity of unfrozen Nostoc mat. DCMU (an inhibitor of photosynthesis) was effective at 3 μM on Anabaena cylindrica (Lex and Stewart 1973) and also appeared to be effective at this concentration on Nostoc. Chlormaphenicol (a translational inhibitor of protein synthesis in bacteria) is effective at 50 μg/ml on Anabaena cylindrica (Murray and Benemann 1979) and also appeared to be effective at this concentration on Nostoc.

After a prefreezing treatment of 3 d in the dark, followed by 3 d of freezing, mats were thawed in light in the presence of DCMU. At 48 h after thawing the DCMU was removed by rinsing the colonies six times with sterile distilled water. Within 12 h after missing, nitrogenase activity was detected.

Nitrogenase activity through 96 h after thawing, increase to more than double its rate of activity from 48 to 96 h after thawing.

Table 1 shows the effect of chlormaphenicol on the recovery of nitrogenase activity from freezing under various prefreezing and thawing conditions. When algal mats were thawed in the presence of chloramphenicol, the response of nitrogenase activity was similar for the various prefreezing and thawing treatments. When mats were exposed to light before freezing and thawed in the light with chloramphenicol, nitrogenase activity was detected 48h after thawing. However, the activity was much lower than that of controls. The mats thawed in dark with chloramphenicol showed nitrogenase activity similar to that of controls, although the peak in activity was at 24 h rather than at 12 h after thawing as in controls. By 48h, nitrogenase activity had declined to equal that of controls, both of which were detected at very low levels. Mats kept dark before freezing and thawed in the light again showed nitrogenase activity to 48 h after 48 h thawing, and this activity was also much less than that of controls. Nitrogenase activity was detected in these colonies again at 96 h after thawing.

4. Discussion

Prefreezing conditions (light or dark) appear to have a major impact on the freeze recovery of nitrogenase activity. Exposure to light before freezing promotes a more rapid rate of recovery of nitrogenase activity after thawing (Fig 2). When mats are kept dark before freezing. The rate of recovery is much slower. The light pretreatment would increase the potential for storage of carbon compounds (i.e. carbohydrates, cyanophycean granules), whereas the dark pretreatment would promote the utilization of stored carbon compounds (Lex and Stewart 1973) Many reports have shown that freeze protection in higher plants can afforded by carbohydrates (Lineberger and Steponkus 1980, Santarius 1971), amino acids (Heber et al 1971),
organic acids (Santarius 1973), and proteins (Volger and Heber 1975). This storage of organic compounds may raise osmotic potential and hence play an important role in freeze protection. This study shows that conditions enabling cells to store carbon compounds before freezing (assuming compound storage during light pretreatment) have a beneficial effect on the freeze recovery rate of nitrogenase activity in Nostoc commune.

The ATP requirement of nitrogenase activity in cyanobacteria is normally supplied by photophosphorylation (Lex and Stewart 1973) and possibly by oxidative phosphorylation. The oxidation of pyruvate via Krebs cycle activity, usually supplies the majority of reductant (Eady and Postgate 1974, Lex and Stewart 1973). Reductant may be supplied by via the pentose phosphate pathway (Haystead and Stewart 1972) involving a glucose -6- phosphate-NADP⁺ complex. Energy requirements during freeze recovery of nitrogenase activity appear to be met via photosynthetic activity. Utilization of stored carbon compounds (under dark conditions) can supply energy for nitrogenase activity during the first 12 h after thawing (Fig 2). However, this source of energy can only support nitrogenase activity equal to about 25% of that in mats exposed to light upon thawing.

When mats were treated with chloramphenicol immediately upon thawing. Nitrogenase activity was still detected 12 to 48 h after thawing (Table 1). Murray and Benemann (1979) showed a decrease in nitrogenase activity within 1 h after the addition of chloramphenicol to air grown cultures of Anabaena cylindrica. They attributed this decrease to an oxygen inactivation of existing nitrogenase in the aerobically grown cultures and no de novo synthesis of nitrogenase to replace inactivated enzyme. When air grown Nostoc commune mats were treated with chloramphenicol, nitrogenase activity decreased substantially after 24 h and continued to decrease through 72 h. On the basis of the results of Murray and Benemann (1979), this decrease in nitrogenase activity of Nostoc mats may be due to oxygen inactivation or normal turnover of existing nitrogenase activity of Nostoc mats may be due to oxygen inactivation or normal turnover of existing nitrogenase. In the present study, low rates of nitrogenase activity were detected between 12 and 48 h after thawing in the presence of chloramphenicol. This implies that some nitrogenase is capable of surviving a freeze period in vivo. However, de novo synthesis of nitrogenase or other critical proteins is required for complete recovery of nitrogenase activity from freezing.

In the field, although temperature becomes limiting from late fall until early spring, Nostoc commune mats can recover from freezing with little physiological damage. When condition are favourable it appears that N. commune can resume growth and nitrogen fixation activity in existing colonies rather than relying solely on the formation of new colonies. This tolerance to freezing allows the mats to persist and possibly contribute substantial levels of nitrogen to localized field sites.

5. Acknowledgements

The author wish to thank the Head of Department, Centre of Advanced study in Botany for providing the laboratory facilities and all necessary help and UGC, New Delhi and UCOST, Dehradun for financial support.

6. References

Table 1: Effect of chloramphenicol (50 μg/ml) on the recovery of nitrogenase activity from freezing in laboratory grown Nostoc commune mat.a.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Light c</th>
<th>Dark c then light d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Cm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>630</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>1040</td>
<td>110</td>
</tr>
<tr>
<td>48</td>
<td>1460</td>
<td>110</td>
</tr>
<tr>
<td>72</td>
<td>1990</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>2790</td>
<td>0</td>
</tr>
</tbody>
</table>

a. Nostoc mat was exposed to light or kept dark before freezing and were thawed to 20°C in the light or dark. Colonies kept dark before freezing and thawed in dark showed no detectable nitrogenase activity in controls or with chloramphenicol (cm) treatment.

b. Nitrogenase activity expressed as nmoles of acetylene reduced /mg chl a per hour

d. Thawing treatment.
3: Effect of DCMU (●) or chloramphenicol (○) on the nitrogenase activity of unfrozen laboratory grown Nostoc commune mats. Nitrogenase activity in controls were 480 and 3,600 nmol of acetylene reduced per milligram of chlorophyll a per h for (●) and (○), respectively.

4: Effect of DCMU (○) on the recovery of nitrogenase activity from freezing in laboratory grown Nostoc commune mats. (control - ●).
Author Index

A
A. Fereidoon 49
A.R. Sabet 49
Abdolhossein Fereidoon 11
Abdolkarim Chehregani Rad 16,21
Abdolmajid Alipour 44
Abdorahim Zahedi 54
Ali reza Kashaninia 54
Amin Karimi Zindashti 94
Ananda Sankar Kundu 69
Azalia Azlegini 111

C
Chao Wu 39

E
Ebrahim Asl-Soleimani 30
Etrat Lalbakhsh 80

F
Fardad Farrokhi 54
Fariba Mohsenzadeh 16,21
Farnaz Montazer 106
Fatemeh Dehghan Nayeri 30
Fathima shahitha Jahir 59
Hussain

G
Guoguang Rong 39
Guoxing Wang 39

H
Hedayat Shahbazi 106
Hojat Ghaedi 75
Homayun Ahmad Panahi 100
Hossein Hemmatian 11

I
I. Odeh 6
I.Jassim 6

J
Jinan B. Aldabbagh 6
Junteng Xu 39

K
K. Koteshwara Reddy 25
K. Pourang 1
K. Vengatajalabathy Gobi 25

M
M. A. Heydarlou 1
M. Bahrami 1
M. M. Zamani 49
Mahdi Gohar rokh 100
Mahsa Mobarakz 94
Majid Ghashang 90
Mansoureh Pashangpour 64
Maryam Otadi 100
Marzieh Cheraghipoor 90
Mashitah Binti Mohd Yusof 59
Mehrangiz Akbari 21
Mohammad Hadi Pirahmadian 84
Mohammad Javad Chai chi 94
Mohammad Reza Ganjali 94
Mohammad Reza Mohammad Shafee 90
Mohammad Hossein Ghasempourabadi 75
Mohammadjavadi 75
Mahdavinejad
Mojtaba Nasr-Esfahani 111
Mojtaba Saeedi 34
Morteza Rajabpour 11

N
Negin Nikhoosh 75

O
Oishee Mazumder 69

P
Pegah shirazpour 80

R
R. Pakdaman Zangabad 1
Rajan Kumar Gupta 116

S
S. Pourang 1
Salman Jiryaie sharahi 34
Seyed manouchehr Hosseini 30
Pilangorgi 49
Sh. Dolati 49
Subhasis Bhaumik 69
<table>
<thead>
<tr>
<th>V</th>
<th></th>
<th>Z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vahid Ghaffari</td>
<td>64</td>
<td>Zeinab Niroomandi</td>
<td>100</td>
</tr>
</tbody>
</table>