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Abstract. In this paper, a first-principle investigation of the electronic properties of graphene on hexagonal 
boron nitride substrate is presented within density functional theory (DFT). We obtain the most stable 
orientation of graphene on the substrate, the adsorption energy, the charge transfer and density of states 
(DOS). We discuss the changes in the density of states as well as the extent of charge transfer, band gap and 
finally quantum conductivity and current for graphene due to the presence of the substrate. We show that the 
band gap of 64 meV induced by the BN substrate can greatly improve the electrical characteristics of 
graphene-based field effect transistors (FETs) and its on/off ratio and decreases the minimum conductance by 
orders of 3. We identify the substrate is acting as donor for graphene layer. 

Keywords: Charge transfer, Density functional theory, Density of state, Quantum transport, Wannier 
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1. Introduction 
Graphene, a one-atom-thick carbon sheet, is a transparent single layer of sp2 hybridized carbon atoms 

arranged in a hexagonal honeycomb structure with strong in plane σ and weaker π bonds. It has chemical 
stability and physical properties like a conductor with high charge carrier mobility. Undoped graphene is a 
zero-gap semiconductor. Electronic states near the Fermi energy of a graphene sheet at energies close to K 
and K’ points in momentum space form Dirac cones. So at low energy, linear energy dispersion relation 
results zero mass quasiparticles that provide ultrahigh mobility for the graphene carriers and high 
conductivity. Thus graphene flakes are suitable to construct field effect transistors (FETs) [1]. One of the 
biggest hurdles for graphene to be useful as an electronic material is the lack of an energy gap in its 
electronic spectra and its minimal conductivity. Since the Dirac fermions are massless, electrical current does 
not block by tuning the gate voltage. The lack of a band gap limits the usage of two dimensional graphene 
for digital switching, where high on/off ratios are necessary. 

Considering graphene on a substrate makes the two carbon sublattices inequivalent that opens an energy 
gap at Dirac points. The origin of this gap is the breaking of sublattice symmetry owing to the  
graphene-substrate interaction that generates mass for the Dirac fermions that opens an energy gap at Dirac 
points. By this way one can solve complication of usage of graphene in electronic devices. Here, we show 
that use of Hexagonal boron nitride (h-BN) as a substrate for graphene produces a gap of ≈64 meV that is in 
good agreement with other result [2]. Hexagonal boron nitride (h-BN) is a suitable choice as a substrate for a 
graphene sheet. It greatly improves the mobility of charge carriers in graphene compared with the 
corresponding SiO2 substrate [1,3,4]. h-BN is a wide gap insulator that has a layered structure very similar 
graphene. The lattice mismatch of graphene with h-BN substrate is little enough to have least disorders in 
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graphene. In this work we have investigated the effects of h-BN substrate on density of states (DOS), band 
structure of graphene and the charge transfers between graphene sheet on h-BN substrate, using  
first-principles calculations based on the density functional theory (DFT).  

The organization of this paper is as follows: In Section 2 the computational details are discussed. In 
Section 3 we investigate the electronic structure of the graphene surface with and without h-BN substrate, 
using density functional theory within the local density approximation. Finally in Section 4 the electrical 
conductance of pristine graphene and graphene with h-BN substrate are studied. 

2. Computational details 
Our calculations are based on the use of DFT and the ab initio pseudopotential plane-wave method using 

the PWSCF code [5] of the Quantum ESPRESSO distribution. We performed the calculations with LDA 
Perdew-Zunger (PZ) (non NLCC) pseudopotentials [6] . For the pseudopotential generation Brillouin Zone 
integrations was performed using a 4×4×1 Monkhorst and Pack special point grids [7] using Gaussian 
smearing technique with a smearing width of 0.01 Ry in order to smooth the Fermi distribution. The Kohn-
Sham orbitals are expanded in a plane wave basis set. The energy cut-off for the wave function and the 
charge density are respectively 45 Ry and 450 Ry. These values are used because of the ultrasoft 
pseudopotentials for N, B and C and the imposed periodic boundary conditions. A graphene sheet is 
simulated by a relatively small hexagonal cell of 8 atoms, with lattice parameters a = 4.85 Å, b = 4.85 Å in 
the xy planes and c = 12 Å (Figure. 1). We represent the vacuum above sheet with an empty space of 12 Å. 

 

 
Fig. 1: Configuration of graphene on h-BN 

 The sampling of the Brillouin zone was done using a 16×16×1 grid, and tested to give convergent 
results for the total energy. To calculate the density of states (DOS) (Figure 2), we use a 50×50×1 grid. The 
charge transfer from B to N is obtained 0.419 e and band gap of a BN sheet is calculated 4.33 eV which are 
are in good agreement with other results (0.429 e and 4.64 eV). Unlike the delocalized π electrons in graphite, 
the π electrons in BN are distributed more around N, because of its stronger electronegativity. This strong 
directional effect of bonding confines the motion of the π electrons and thus results in a gap in h-BN. 

The amount of charge transfer between graphene sheet and BN can be estimated by projecting the charge 
density onto the atomic orbitals. We define the charge transfer as the difference between the L¨owdin 
charges for isolated graphene sheet and graphene sheet with h-BN substrate. From this result one can 
determine whether the substrate acts as an acceptor or as a donor. The donor behaviour of substrate causes 
the Fermi level of graphene sheet with substrate to shift upward, and the acceptor behaviour of it causes the 
Fermi level of graphene sheet with substrate to shift downward with respect to the Fermi level of graphene 
sheet. There is a small total charge transfer of 0.014 e between graphene surface and the h-BN substrate. 
Comparing Fermi energy of two cases shows that graphene on h-BN substrate acts as an acceptor. 
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modifies the WFs such that their distributions are unsymmetrical near the mid-point of C-C bonds and on 
carbon atoms Figure 4. 

 

 
Fig. 4: (Right) Isosurface of σ WF in graphene, (Left) Isosurface of π WF in graphene. 

Calculation of quantum conductance and current at low biases are done. As can be seen in Figure 5, at 
the Fermi level the conductivity of graphene with h-BN subatrate is less than that of pristine graphene. This 
is due to the donor behaviour of the h-BN molecule which causes the Fermi level of graphene with h-BN to 
shift upward with respect to the Fermi level of pristine graphene. In Figure 5 the I/V curves of the two cases 
have been depicted. They are linear and ohmic which is in good agreement with other works [9]. Calculating 
the slopes of these curves, we obtain the conductance of pristine graphene, graphene with the substrate to be 
0.58, 0.25 (μA/V), respectively. 

 

 
Fig. 5: (Left) Calculated quantum conductance and (Right) current for pristine graphene and graphene on h-BN 

substrate in terms of bias voltage. 

Boardering of bandstructure near Fermi level at K point in momentum space after forming graphene on 
the substrate induces none zero mass for quasiparticles that provide lower mobility for the graphene carriers 
and lower conductivity. Minimum conductivities are calculated 1.1 e2/h and 0.36 e2/h for graphene and 
graphene with the substrate that is in good agreement with other work [10]. Minimum current at zero bias 
voltage is 3.56×10-10 µA for graphene that limits the usage of two dimensional graphene for digital switching, 
where high on/off ratios are necessary. The minimum current is decreased by placing graphene on h-BN 
substrate, 1.17×10-10 µA. As a result, graphene on h-BN substrate has higher on/off ratio respect to pristine 
graphene.  

4. Conclusion 
We have investigated the electronic structure and quantum conductance of a graphene sheet on top of a 

lattice-matched hexagonal boron nitride (h-BN) substrate using first-principles methods. The calculations are 
done utilizing the density functional theory through the pseudopotentials and plane-waves method within the 
local density approximation. The most stable configuration has one carbon atom on top of a boron atom, and 
the other centered above a BN ring. The resulting inequivalence of the two carbon sites leads to the opening 
of a gap of 64 meV at the Dirac points of graphene and generating a non zero mass for the Dirac fermions 
that causes decreasing the minimum conductance by orders of 3. The band gap induced by the BN surface 
can greatly improve the characteristics of graphene-based FETs and its on/off ratio. 
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