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Abstract. A land use land cover (LULC) map aids in determining the extent of various land uses and land 

cover types as well as in assessing the impacts from hazards like flood. However, poor segmentation and 

classification lead to a less accurate and less reliable map. This paper aims to examine and assess the effect of 

using the Digital Surface Model Slope (DSM Slope) as an additional layer to the analysis of accuracy. The 

LiDAR-based datasets used were Canopy Height Model (CHM), Digital Surface Model (DSM), Digital 

Terrain Model (DTM), Intensity, and the slope of Digital Surface Model (DSM Slope). Two methods were 

performed and a series of Kappa analysis test of significance was conducted for comparison purposes. The 

two error matrices produced by the two methods were then analyzed. It was determined that the two methods 

produced classifications which were significantly better than a random result as well as significantly different 

from each other. Furthermore, the method that used DSM Slope as an additional layer produced a promising 

result with higher overall accuracy and Kappa index of agreement (KIA) compared to the method with no 

DSM Slope for this particular study. The land use land cover map produced with higher accuracy can still be 

refined and can be used in management and planning purposes.  
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1. Introduction  

Remote sensing data are important sources for generating or upgrading GIS databases in a variety of 

applications [1]. With the abundant land cover information, remote sensing provides a wide range of 

applications in many fields, such as urban planning, environmental monitoring, disaster assessment and 

many other purposes [2]. Furthermore, Land Use Land Cover (LULC) maps produced from remotely sensed 

data aids in determining the extent of various land use and land cover types as well as in assessing the 

impacts from hazards like flood. However, poor segmentation – over segmented or under segmented – and 

therefore poor classification of remotely sensed data result to a less accurate and less reliable map. Image 

segmentation plays a vital role in coming up with a useful and more reliable land use land cover maps. It has 

been extensively studied [3] nowadays and several segmentation algorithms have been variously studied and 

experimented. It is a key step in object-based analysis which partitions an image into non-overlapping 

regions where each region is as homogeneous and neighbouring ones as different as possible [3]. Moreover, 

selection of layers to be used for the whole workflow plays a critical role in the creation of high accuracy 

LULC map. In this study, one Digital Surface Model (DSM) based layer was experimented namely the slope. 

This study was conducted to investigate and assess the effect of adding the slope of Digital Surface Model to 

the overall accuracy and Kappa index of agreement (KIA) of the map. 

2. Objectives 
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This paper aims to investigate and assess the effect of using the slope of Digital Surface Model as an 

additional layer to the overall accuracy and Kappa index of agreement of the produced maps, compare the 

produced error matrices with a random result as well as to determine if the error matrices are significantly 

different from each other using the Kappa analysis test of significance. 

3. Data and Methods 

3.1. Study Area 

The selected site for this study is the City of Bacolod. It is the capital of the province of Negros, 

Occidental, Philippines which is located 10.6407° N, 122.9690° E in the Western Visayas Region. It has a 

land area of approximately 152.24 square kilometres. The LiDAR data coverage for the study site has an area 

of approximately 108.16 square kilometers. It is a portion of a one flight mission and covers 70% of the 

whole city in terms of land area in square kilometers. Fig. 1 and Fig. 2 below show the location of the study 

site in the whole Philippines, and the coverage of the study site with LiDAR data respectively. 

 
Fig. 1: Location of the study site  

 
Fig. 2: The study site LiDAR data coverage (yellow) 

3.2. Data Sources and LiDAR Based Derivatives 

The 1-meter spatial resolution LiDAR data which was acquired last June 2014 was used for this study. 

Its LiDAR-based derivatives such as Canopy Height Model (CHM), Digital Surface Model (DSM), Digital 

Terrain Model (DTM), Intensity, and the Slope of Digital Surface Model (DSM Slope) were then served as 

inputs in the eCognition Developer 9.1. 

3.3. Scope and Limitations 
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The LiDAR data coverage of the study site has an area of approximately 108.16 square kilometres only. 

The remotely sensed data used in this study was acquired through the LiDAR technology. The method and 

workflow used in this study were only limited to: 1.) the type of remotely sensed data (LiDAR data), 2.) 

classifying six (6) target classes, 3.) five (5) LiDAR-based derivatives namely CHM, DSM, DTM, Intensity, 

and DSM Slope, 4.) no orthophoto used, 5.) the weights of the derivatives and the features used in the 

segmentation and classification stage respectively, 6.) the classifier type (SVM), kernel type (rbf), value for 

C (1000) and gamma (0), and 5.) the area of the LiDAR data coverage for this study .  

3.4. Workflow 

Two methods were done in this study. One is the control which is the extraction of land use and land 

cover types using only four (4) LiDAR-based derivatives namely Canopy Height Model (CHM), Digital 

Surface Model (DSM), Digital Terrain Model (DTM), and Intensity. On the other hand, another method 

which is the experimental used five (5) LiDAR-based derivatives, the ones used by the control and an 

additional derivative created in ArcGIS namely the Slope of the Digital Surface Model (DSM Slope). The 

same pipeline of processes was used in the segmentation and classification stage for both control and 

experimental. The error matrices produced by the two methods were then analysed and the comparison of the 

results were made afterwards. Fig. 3 below shows the general workflow for both control and experimental. 

 
Fig. 3: The general workflow for both Control and Experimental 

3.5. Segmentation Stage 

Different segmentation algorithms were used to come up with a good segmentation and by good means 

that as much as possible over segmentation or under segmentation is minimized. The separation of no data 

from the others was done first using multi-threshold segmentation with Digital Surface Model (DSM) and 

Digital Terrain Model (DTM) as inputs. Then the water class was separated from non-water class using a 

water shapefile used as thematic layer. The application of contrast-split segmentation with Canopy Height 

Model (CHM) as the input layer was then applied to the non-water class to further create the ground and 

non-ground classes. For both control and experimental methods, ground class was segmented using 

multiresolution segmentation with scale of 130, and shape and compactness of 0.1 and 0.5 respectively. 

However, the weights of the LiDAR-based derivatives in the multiresolution segmentation process of the 

ground class for control method were 7, 3, 5, and 10 for CHM, DSM, DTM, and Intensity respectively. On 

the other hand, for experimental method, the same weights as with that of control method were used for 

CHM, DSM, DTM, and Intensity but DSM Slope was added as a layer and was given a weight of 20. For 
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non-ground class of both control and experimental methods, still multiresolution segmentation was 

implemented with scale parameter of 30, and shape and compactness of 0.2 and 0.8 respectively. In relation 

to the image layer weights used for segmenting the non-ground class, the weights were the same for the four 

(4) derivatives namely CHM, DSM, DTM, and Intensity for both control and experimental methods. For 

CHM, DSM, DTM, and Intensity, the weights were 25, 10, 0, and 0 respectively. However, DSM Slope for 

the experimental method was given a weight of 15 to aid in segmenting the non-ground class. Table 1 below 

shows the summary of the image layer weights of each LiDAR-based derivatives for each method. 

Table 1: Summary of image layer weights of each LiDAR-based derivatives for control and experimental 

LiDAR-based Derivatives 

Image layer Weights for Multiresolution Segmentation 

For Ground Class For Non-ground Class 

Control  Experimental Control Experimental 

Canopy Height Model (CHM) 7 7 25 25 

Digital Surface Model (DSM) 3 3 10 10 

Digital Terrain Model (DTM) 5 5 0 0 

Intensity 10 10 0 0 

Slope of Digital Surface Model (DSM Slope) Not Used 20 Not Used 15 

 

3.6. Training and Validation Points Collection 

The collection of training and validation points was a combination of field data and image interpretation. 

The points used for training the classifier and for validating the classified map were the same for both control 

and experimental in terms of number of points per class and location of each point. Initially, there were six (6) 

classes namely buildings (Bu), trees, fallow (Fa), grassland (Gr), rice (Ri), and sugarcane (SC). A total of 

150 training points and 65 validation points for the whole study site. The ratio of the number of training 

points to the number of validation points per class was 60%:40%. Table 2 below shows the summary of the 

number of training and validation points per class for control and experimental.  

Table 2: Summary of training and validation points per class for control and experimental 

Classes 

Training Points Validation Points 

Control  Experimenta

l 

Control Experimenta

l 

Buildings (Bu) 28 28 12 12 

Trees 35 35 15 15 

Fallow (Fa) 28 28 12 12 

Grassland (Gr) 21 21 9 9 

Rice (Ri) 10 10 5 5 

Sugarcane (SC) 28 28 12 12 

 

3.7. Classification Stage 

The classification process was done for both control and experimental. Land use land cover classes were 

obtained by using the LiDAR-based layers in object-based image analysis (OBIA). The inclusion of the 

DSM Slope-based features was in the experimental method. The same set of training points was loaded in 

the classifier as well as the same features were loaded in the Support Vector Machine (SVM) for both control 

and experimental. Two (2) SVMs per method were used, one for ground and one for the non-ground class. 

For both control and experimental, similar features namely Mean: CHM, DSM, DTM, and Intensity, 

Standard deviation: CHM, DSM, DTM, and Intensity, Asymmetry, Border index, Compactness, Density, and 

96



GLCM Homogeneity: CHM, DSM, DTM, and Intensity were loaded in the SVM for ground class. However, 

for experimental method, additional features namely Mean DSM Slope, Standard deviation DSM Slope, and 

GLCM Homogeneity DSM Slope were also loaded in the SVM for ground class. All the features (including 

the additional features for the experimental method) loaded in the SVM for ground class for both control and 

experimental were also the same features used in the SVM for non-ground class. Moreover, the same set of 

validation points was used to obtain the accuracies of both methods. Hence, normalization of the result in the 

analysis part was unnecessary. No orthophoto was used and no refinement was done for both control and 

experimental. The target classes were buildings (Bu), fallow (Fa), grassland (Gr), rice (Ri), sugarcane (SC), 

and trees (Trees). 

3.8. Statistics 

An important step in analysing remote sensing data is the accuracy assessment [4]. Through the error 

matrix produced after the classification process was completed, variety of analysis and interpretations can be 

done. The error matrix can be used as a starting point for a series of descriptive and analytical and statistical 

techniques [5]. An example of a descriptive statistic is the overall accuracy. It is perhaps the simplest 

descriptive statistic according to [5]. It is simply the quotient of diving the sum of the major diagonal by the 

total number of sampling units [6]. In addition to the overall accuracy, Kappa index of agreement (KIA) is 

also found and produced together with the overall accuracy in the error matrix. Performing Kappa analysis 

results to a Kappa estimate called KHAT statistic [5] which is another name for KIA. The KHAT statistic is 

computed as:  
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Where r is the number of rows in the matrix, xii is the number of observations in row i and column i, xi+ 

and x+i are the marginal totals of row i and column i, respectively, and N is the total number of observations 

[7]. Kappa is also one of the discrete multivariate techniques in accuracy assessment [8] which is based on 

the difference between the actual agreement in the error matrix and the chance of agreement [9]. Kappa 

values should be positive since there should be a positive relationship between the classification produced 

and the reference data. To represent various levels of agreement, [10] proposed range values of the Kappa 

statistic. A value exceeding 80% or 0.80 represents a high agreement, while values between 0.60 and 0.80 

represents moderate agreement, and those below 40% or 0.40 represents weal agreement [10]. A perfect 

classification or 100% correctly classified image would not only produce a Kappa value of one (1) but would 

also produce a variance and standard deviation of zero (0) [9]. Furthermore, Kappa provides information 

about a single matrix as well as statistically compares matrices [5]. Kappa also has the ability of testing the 

significance of each error matrix alone, and that is, to test if each error matrix is significantly better than a 

random result [5]. In this case, our null hypothesis is KHAT = 0 or no difference between the proportion of 

observations that agree by chance and the proportion of observations correctly classified. The null hypothesis 

also means that the classification which produced the KHAT statistic is significantly not better than a 

random result. The standard normal deviate, Z, for testing the significance of each error matrix alone can be 

computed as the quotient of Kappa estimate or KHAT statistic, k subtracted by zero (0) divided by the 

estimated standard deviation of Kappa, stddev [9]. The estimated standard deviation of Kappa, stddev, is 

computed as the square root of the estimated variance of Kappa, V  [9] and is calculated as: (2) 
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Where N is the total number of observations, m is the number of categories, pc is the proportion of 

observations that agree by chance, and po is the proportion of observations correctly classified [11]. The 

criteria for rejecting the null hypothesis is if the standard normal deviate, Z, exceeds 1.96, then the difference 
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between the proportion of observations that agree by chance and the proportion of observations correctly 

classified is significant at 95% confidence level [12]. Furthermore, the rejection of the null hypothesis 

implies that the classification which produced the KHAT statistic is significantly better than a random result. 

Moreover, Kappa also has the ability of comparing two (2) classifications and determining if the accuracy 

between the two produces a significantly different result. In determining the significance between the two 

classifications, variance should be computed first [13]. Using the KHAT statistic, k̂ , and the estimated 

variance of Kappa, V  for each of the classification, the standard normal deviate, Z, can be computed as:    
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Where Z is the standard normal deviate, 
1k  is the KHAT statistic for the first classification, 

2k  is the 

KHAT statistic for the second classification, 
1( )V k  is the estimated variance of 

1k , and 
2( )V k is the 

estimated variance of 
2k  [14]. If the standard normal deviate, Z, exceeds 1.96, then the difference between 

the two classifications is significant at 95% confidence level [12]. In this study, with the use of Kappa 

analysis, we determined and analyzed if the results in the error matrices for control and experimental are 

significantly better than a random result then we also checked if the comparison of the error matrix of the 

control method and that of the experimental produced a significantly different result.   

4. Results and Discussion 

4.1. Segmentation 

The segmented images of control and experimental were compared to determine if which of the two is 

more visually close to a good segmentation. It was found that some agricultural fields were segmented as 

parcels in the experimental method than in control. Fig. 4 below shows a portion of the segmentation output 

of control and experimental methods. Orthophoto in the images below was only used for visual inspection of 

the outputs. 

      
Fig. 4: A portion of the segmentation output of control (left photo) and experimental (right photo) 

4.2. Classification 

The LiDAR data was classified for control with an overall accuracy of 72.62% and Kappa index of 

agreement (KIA) of 60.94%. On the other hand, experimental produced an overall accuracy of 91.07% and 

87.06% Kappa index of agreement. Fig. 5 below shows the classification outputs for the two methods. 

Clearly, there was a difference in the visual appearance between the two classification outputs. Fig. 6 and Fig. 

7 below show the zoomed-in portion of the segmentation and classification outputs for control and 

experimental respectively. Table 3 below shows the summary of the overall accuracy and Kappa index of 

agreement (KIA) for control and experimental. 
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Fig. 5: Classification outputs for control (left photo) and experimental (right photo)  

 

       
Fig. 6: Zoomed-in portion of the segmentation and classification outputs for control 

 

      
Fig. 7: Zoomed-in portion of the segmentation and classification outputs for experimental 

 

Table 3: Summary of the overall accuracy and KIA for control and experimental 

Method Overall Accuracy KIA 

Control 72.62% 60.94% 

Experimental 91.07% 87.06% 

 

4.3. Statistics 

The error matrices of control and experimental were compared and series of Kappa analysis test of 

significance were done. Table 4 and Table 5 below show the error matrix for control and experimental 

respectively. As mentioned earlier, Kappa analysis test of significance of each error matrix determines if the 

classification which produced the KHAT statistic for each method is significantly better than a random result. 

Table 6 below presents the result of Kappa analysis test of significance of each error matrix. Since the values 
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of the standard normal deviate, Z, for both control and experimental, that is, 1508.70884 and 2978.320086 

respectively exceeded 1.96, hence at 95% confidence level the classifications produced by the control and 

experimental method were significantly better than a random result. Also, Kappa analysis has the ability to 

compare two (2) error matrices. Table 7 below presents the results of comparing the error matrices of control 

and experimental. Clearly, at 95% confidence level, the difference between the classification produced by the 

control method and the one produced by the experimental method was significant. 

 

Table 4: The error matrix for control  

Control Reference 

Bu Trees SC Fa Gr Ri CT
a
 

Classified Bu 33836 0 4044 0 0 0 37880 

Trees 0 22520  0 0 0 22520 

SC 91208 57340 726524 0 0 0 875072 

Fa 0 0 0 568960 176628 34312 779900 

Gr 0 0 0 36672 68344 29340 134456 

Ri 0 0 0 118780 17756 80924 217460 

CT
a
 125044 79860 730568 724412 262728 144576 2067188 

a
CT=Column Total 

b
RT=Row Total 

Table 5: The error matrix for experimental 

Experimental Reference 

Bu Trees SC Fa Gr Ri CT
a
 

Classified Bu 32672 0 0 0 0 0 32672 

Trees 0 17832 1576 0 0 0 19408 

SC 0 0 626612 0 0 0 626612 

Fa 0 0 0 744264 40460 0 784724 

Gr 0 0 0 123104 275848 11892 410844 

Ri 0 0 0 0 0 108308 108308 

CT
a
 32672 17832 628188 867368 316308 120200 1982568 

a
CT=Column Total 

b
RT=Row Total 

 

Table 6: Results of Kappa analysis test of significance for control and experimental 

Method KHAT Statistic Z Statistic Result
a
 

Control 0.609378642 1508.70884 S
b
 

Experimental 0.870579325 2978.320086 S 

a
At 95% confidence level. 

b
S=Significant 

 

Table 7: Results of Kappa analysis for comparison between error matrices of control and experimental 

Comparison Z Statistic Result
a
 

Control vs. Experimental 523.8876585 S
b
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5. Conclusion and Recommendations 

Two methods were performed in this study: the control which used only four (4) LiDAR-based 

derivatives namely CHM, DSM, DTM, and Intensity, and the experimental method with five (5) LiDAR-

based derivatives namely the four (4) mentioned earlier and an additional layer created from ArcGIS, the 

DSM Slope. Both methods were segmented with the same weights, scale, and parameters for the four (4) 

LiDAR-based derivatives mentioned above. However, for the experimental method, DSM Slope was 

incorporated and was given a weight. It was found that some land use and land cover types, especially 

agricultural fields, were segmented in parcels in the experimental method than in control. In the classification 

stage, the features used in the SVMs for the control method were also the exact features loaded to the 

experimental method’s SVMs with additional three (3) DSM Slope-based features namely Mean DSM Slope, 

Standard deviation DSM Slope, and GLCM Homogeneity DSM Slope. The classification stage resulted in 6 

classes namely built-up, fallow, grassland, rice, sugarcane, and trees. The classification results produced by 

the two methods were quite different from each other in terms of the visual appearance. So, we hypothesized 

that the classifications produced were significantly different from each other. The control method produced 

an overall accuracy of 72.62% and a KIA of 60.94%. On the other hand, the experimental method obtained 

an overall accuracy of 91.07% and a KIA of 87.06%. Compared to the ones produced by the control method, 

the overall accuracy and KIA of the experimental method were relatively higher. At this particular point, we 

can’t conclude yet that the classification produced by the experimental method was better than that of the 

control method. Using the error matrices produced by the two methods, a series of Kappa analysis test of 

significance was performed. Initially, the two classifications were tested against a random result. It was 

determined that both were significantly better than a random result. Following the prior test, the two 

classifications were tested against each other. It was confirmed that the two classifications were significantly 

different from each other. Hence, for this particular study site with an area of approximately 108.16 square 

kilometres, with only five (5) LiDAR-based derivatives, with nineteen (19) features loaded in the SVM, and 

with only six (6) target classes, the experimental method has a promising result compared to the control 

considering the limitations of this study mentioned in the scope and limitations. Furthermore, the slope of the 

Digital Surface Model (DSM Slope) incorporated as an additional layer helped in increasing the individual 

producer and user accuracy of the six (6) target classes as well as produced a promising overall accuracy and 

Kappa index of agreement (KIA) for this particular study site. A number of researches and experiments 

including adding orthophoto and other useful derivatives as well as adding and/or experimenting features to 

be loaded in the support vector machine is recommended to test if the slope of the Digital Surface Model 

really aided in producing a promising result. 
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