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Abstract—In this paper, we consider a non-ideally mixed 
fermentation process, which exhibits a challenging dynamics 
for control design. Due to the non-ideal mixing condition in the 
bioreactor, new control strategies by using aeration rate and 
stirrer speed as manipulated variables are proposed to control 
productivity and yield. For this control structure, a nonlinear 
model-based controller is designed. Two nonlinear models with 
different complexity are developed and employed for the 
controller design. Our simulation results reveal that the 
controller designed using a simple data-based model produces 
an acceptable closed-loop performance as that using a kinetics 
hybrid model. However, when the disturbances are exciting 
more dynamics and nonlinearity of the process, the kinetics 
hybrid model-based controller outperforms the data-based 
controller. 
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I.  INTRODUCTION 
Mathematical modeling, identification and real-time 

control of fermentation processes offer a challenging task for 
researchers due to the complications of biological systems 
and implementations in real-life bioreactors [1]. Due to such 
complications, the design of model-based control algorithms 
for fermentation processes is held back especially due to the 
lack of understanding of the process kinetics as well as lack 
of reliable sensors suited to real-time monitoring of the 
process variables [2]. Thus, in the earlier days, no model is 
used to control a fermentation process. Open-loop control is 
still utilized until today, whereby it has been used to track 
successful state trajectories from previous runs which had 
been stored in the process computer [2].  

Currently, efforts are made in developing mathematical 
models in order to control fermentation processes. There are 
certain problems arising in terms of monitoring design and 
control algorithms for fermentation processes. The 
complexity of these processes resulted in difficulties to 
develop models which are required to be taken into account 
numerous factors which can influence the internal working 
and dynamics of these processes [3]. Thus, accurate 
mathematical process models are overlooked in order to 
simplify the design and control algorithms of the process. 
Classical methods, for example Kalman filtering and optimal 
control theory are applied, by assuming that the model is 
perfectly known [2]. Thus, real-life implementation of such 

controllers are very unlikely due to its over simplicity which 
could result inaccuracy of simulation results.  

Thus, the aim of the present work is to explore different 
mathematical models for control design. In particular, our 
focus is to capture the mixing mechanism within a bioreactor 
so that its effect on the bioreactor’s performance, i.e. yield 
and productivity can be studied. By analyzing the dynamic 
behavior of the non-ideally mixed fermentation process, two 
manipulated variables were used, i.e. aeration rate (AR) and 
stirrer speed (SS). Using these manipulated variables, a 
nonlinear model-based controller is designed, where two 
different models are implemented in the controller design. 
The paper is organized as follows. Firstly, the process 
modeling is described and physical parameters are 
determined by validating the model with experiment data. 
Next, nonlinear control strategies are developed. The 
effectiveness of the nonlinear controller is evaluated via 
simulation, where different disturbance scenarios are 
explored. The results of the different control strategies are 
discussed. Finally, conclusions end the paper.  

II. EXPERIMENTAL WORK 
To validate the develop models, a set of experiments 

were conducted in laboratory scale, i.e. a 0.002m3 (2L) size 
bioreactor with 0.128m in diameter and 0.240m in height. A 
standard six bladed Rushton turbine impeller, which has a 
diameter of 0.030m, is located halfway between the liquid 
surface and the vessel base.  Glucose was used as the main 
substrate and air was pumped into the bioreactor. 0.0015m3 
(1.5L) of fermentation medium was prepared by adding 
0.075kg glucose, 0.0075kg yeast, 0.00375kg NH4Cl, 
0.00437kg Na2HPO4, 0.0045kg KH2PO4, 0.00038kg MgSO4, 
0.00012kg CaCl2, 0.00645kg citric acid and 0.0045kg 
sodium citrate. The medium culture was sterilized at 121oC 
for 900s (15 minutes) and then cooled down to room 
temperature. 4x10-5m3 (0.040L) of yeast (Saccharomyces 
cerevisiae) inoculum was added to the fermentation medium. 
Temperature and pH conditions were maintained and 
controlled at 30°C and pH 5 respectively. The process was 
stopped after approximately 259,200s (72 hours) and 
samples were taken in every 7,200s (2 hours) to measure the 
ethanol concentration. The presence of ethanol was 
analyzed by using R-Biopharm test kits and UV-VIS 
spectrophotometer. Yield and productivity were therefore 
calculated based on the ethanol concentration measured 
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through experimental data. Experiments were repeated with 
different conditions of AR and SS. AR and SS were set 
within a range of 1.67x10-5-2.505x10-5m3/s (1.0-1.5LPM) 
and 2.500-4.167rps (150-250rpm) respectively [4].  

III. PROCESS MODELING 
Two process models, i.e. data-based model and kinetics 

hybrid model, were developed for the implementation of 
both AR and SS as manipulated variables and the 
productivity and yields as outputs. The data-based model 
was developed based on linear regression model to 
experiment data, i.e. a set of AR and SS values to the 
productivity and yields. On the other hand, the kinetics 
hybrid model was developed based on Herbert’s concept of 
endogenous metabolism as well as macro-scale bioreactor 
model. Herbert’s concept was chosen especially in 
fermentation processes since it could describe the kinetics of 
the process thoroughly [5]. 

A. Data-Based Model 
In this model, mixing was included by developing a 

correlation model from experimental data of AR and SS to 
predict yield and productivity. This is the simplest model for 
yield and productivity prediction. Experimental data 
obtained were used for the development of regression model. 
Suppose that the process yield or productivity is a function 
of the levels of AR (or x1) and SS (or x2): 

                         ε+= ),( 21 xxfy                                  (1) 

where ε represents the error in the response y, i.e. Yield (Y) 
or Productivity (P). If the expected response is denoted 
by η== ),()( 21 xxfyE , then the surface represented by 

),( 21 xxf=η  is called a response surface.  
Therefore,  
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As a first approximation, a quadratic model (3) could be 
used to fit the experimental data, whereby β0, β1 and β2 
values will be determined using regression analysis of 
experimental data. β’s will be estimated by minimizing the 
sum of the squares of the errors (the ε’s). Thus, predicted 
yield and productivity as well as optimum AR and SS could 
be obtained. 
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Our results suggest that the data-based model of the 
fermentation process is: 

2*00.26
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B. Kinetics Hybrid Model 
According to Herbert’s concept [5], it was assumed that 

the observed rate of biomass formation comprised of the 
growth rate and the rate of endogenous metabolism:  

                       
endxgrowthxx rrr )()( +=                          (6) 
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It was also assumed that the rates of substrate consumption 
and product formation are proportional to the biomass 
growth rate: 

               growthxgrowthss rkrr )()( 3−==                        (8) 
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The rate of growth due to endogenous metabolism by a 
linear dependence is shown in (9): 

                            Xkr endx 6)( −=                                 (10) 

In order to obtain the expressions of k1 to k6 in terms of AR 
and SS, the following regression analysis is applied, 
whereby experimental data such as substrate and product 
concentrations as well as yield and productivity values will 
be utilized. By taking AR and SS into account in the general 
expression of linear regression, we get:  

            Variable = ®1 + ®2 R
RR

r
rr

Δ
−+

Δ
− )()(

3β        (11) 

                                                                                                        
where “Variable” represents k1 to k6,  r and R denote the 
variables taken into account, i.e. AR and SS, whereas r  and 
R  represent the baseline values for AR and SS. β1, β2 and β3 
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values will be obtained through model fitting. Thus, (11) 
represents all expressions of k1 to k6 which will be 
implemented into (6) to (10). All of these equations signify 
the kinetic model. Based on the experiment data, the 
optimum values of β1, β2 and β3 were obtained so that the 
developed kinetic model is given as: 

                k1 = 1.4085 – 0.2852X1 + 0.3692X2                           (12) 

k2 = 0.0010                                                        (13) 

               k3 = 0.6631 – 0.0148X1 + 0.0220X2                            (14)                                                                                           

              k4 = 0.1040 + 0.0142X1 + 0.0128X2                  (15) 

              k5 = 0.7558 – 0.1019X1 -0.0211X2                     (16)                    

              k6 = 0.0143 – 0.0001X1 – 0.0019X2                    (17) 

where 25.0/)25.1(1 −= ARX
 
and 

50/)200(2 −= SSX .
           A general model of the macro-scale bioreactor is given as: 

Biomass formation: xrdtdX =/                             (18) 

Substrate consumption: srdtdS =/                      (19) 

Product formation: prdtdP =/                      (20) 

Yield: %100
0

×
− SS
P

                         (21) 

Productivity: BTP /                                  (22) 

where S0 is the initial substrate concentration (kg/m3) of the 
medium, S is the final substrate concentration (kg/m3) of the 
medium, P is the final product concentration (kg/m3) of the 
medium and BT is the batch time (s) allocated for the 
fermentation process.  

Combining equations (12-17) with the macro scale 
bioreactor model of (18-22), we obtain a kinetics hybrid 
model of the fermentation process.                   

 

IV. CONTROLLER  DESIGN 
To design the controller for the fermentation process, an 

optimization approach of [6] is employed which requires an 
explicit non-linear model in the form of: 

                     ),,( 11 θ−−= ttt uyfy                           (23) 

where yt and yt-1 are the current and past predicted outputs; 
ut-1 is the past inputs; Ө is the process parameters. Equation 
(23) will be used in solving a constrained or unconstrained 
nonlinear optimization problem that minimizes the 
following objective function: 
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where mty are the current measurements of the outputs; 
*

1 ttt uuu Δ+= − are the optimal inputs and et is the current 
error trajectory defined as: 
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ysp is the set point of the outputs and k is the tuning 
parameter for desired closed-loop responses. 
Fig. 1 shows the closed-loop control implementation of the 
nonlinear model-based controller. 

 
Figure 1. Nonlinear Model-Based Controller. 

Note that when there are no constraints, i.e. (26) and (27) 
do not exist, the optimal solution for the nonlinear 
optimization will have an explicit form as follows: 

            ])([
0
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T

msptt dtyykyu
t

     (29) 
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which is a PI type controller, but the gain is adjusted using 
the nonlinear model of (23) so it is nonlinear gain. 

V. SIMULATION RESULTS 

A. Control Objective 
The control design objective was to maintain yield and 

productivity of the fermentation process in the face of 
disturbances in the feed substrate concentration So and or 
dilution rate, D.  Fig. 2 outlines the feedback control of the 
fermentation process, where sp is the set point of the output 
variables, i.e. productivity and yield. Yield and productivity 
will be calculated based on the measured biomass, product 
and substrate concentrations. 

 
Figure 2. System Layout of Fermentation Process. 

B. Open-Loop Dynamics 
Table I summarizes the steady state conditions for all the 

input, output and disturbance variables, whereas Table II 
shows the disturbance variables values after step 
perturbation of +10% around their operating conditions. 

TABLE I: SUMMARY OF STEADY STATE CONDITIONS FOR ALL VARIABLES 

Description Steady State Condition
Yield 21.15% 

Productivity 0.15g/L.hr (4.17x10-5kg/m3.s)
Biomass Concentration 30g/L solution (30kg/m3 solution)
Substrate Concentration 48g/L solution (48kg/m3 solution)
Product Concentration 5.2g/L solution (5.2kg/m3 solution)

AR 1.43LPM (2.38x10-5m3/s)
SS 250rpm (4.17rps)

TABLE II: +10% STEP PERTURBATION VALUES OF DISTURBANCE 
VARIABLES (SCENARIO I) 

Description Up Down
So 55 45
D 1.1 0.9

 
The open-loop dynamics of the fermentation process 

were simulated and analyzed. Fig. 3 shows their open loop 
dynamics to the disturbance changes. As observed in Fig. 3, 
the dynamics of productivity is faster than the dynamics of 
yield. Based on the responses of the magnitude, this analysis 
shows that the yield and productivity can also be controlled 
by manipulating S0. Same goes to biomass, substrate and 
product concentrations, whereby these can be controlled by 
the manipulation of S0. However, our system does not allow 
S0 to be manipulated variable.  
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Figure 3. Open-Loop Dynamics of Yield, Productivity, Biomass 

Concentration, Substrate Concentration and Product Concentration. 

 
Furthermore, we notice that the dynamics of substrate 

concentration is the fastest as compared to that of biomass 
and product concentrations. Thus, only slight changes in 
substrate concentrations are observed after the initial period.   

C. Closed- Loop Dynamics 
In the closed-loop analysis, we implement the nonlinear 

controller designed using either the data-based or the hybrid 
kinetics model to control both yield and productivity in the 
fermentation process. We study their performances in the 
face of disturbance scenario as in Table II. Fig. 4 shows that 
both controllers were able to keep the controlled variable in 
their set-point values, by manipulating both AR and SS.  

A step change of +10% was made in S0 and D at time 
t=20 hr (72,000s), i.e. both S0 and D values were changed 
instantaneously to a new value and kept constant at this new 
value indefinitely. From Fig. 4, it can be seen that both 
controllers performed well, whereby there are not much 
oscillations observed in the closed-loop dynamics of the 
yield. More dynamics are observed for the productivity. The 
kinetics hybrid model controller showed a bit of oscillations 
with higher overshoot and required longer time to return to 
the set-point. On the other hand, the performance of the 
simple data-based controller is slightly better.  
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Figure 4. Closed-Loop Responses for Disturbance Scenario I. 

The results indicate that for the 10% change of 
disturbances, a simple controller performs slightly better 
than that of the complex, hybrid controller. Such differences 
are not significant, though. Both control strategies were able 
to keep the controlled variables in their set-point values for 
the 10% change of the disturbances.  

Our investigation is continued for a larger disturbance 
scenario exciting more nonlinearity and dynamics of the 
process. The step perturbation was increased to +30% from 
the steady state conditions of S0 and D as in Table III. 

TABLE III. +30% STEP PERTURBATION VALUES OF DISTURBANCE 
VARIABLES (SCENARIO II) 

Description Up Down
So 65 35
D 1.3 0.7

 
Fig. 5 shows the closed-loop responses for both data-

based and kinetics hybrid model-based controllers for 
scenario II. Both control strategies were able to maintain the 
controlled variables in the set point values. However, the 
kinetics hybrid model controller performed much better than 
the data-based model controller. Much more oscillations and 
demanded longer period of settling time to bring the process 
back to the set point are observed for the data-based 
controller. This could be seen for all the input and output 
variables. Besides, a higher overshoot can be observed 
especially for yield, productivity, biomass concentration and 
substrate concentration. Note that the manipulated variables 
AR and SS hit their upper limits indicating nonlinear 
dynamics of the process. 
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Figure 5. Closed-Loop Responses for Disturbance Scenario II. 

As a conclusion, the kinetics hybrid model-based 
controller produces a much better closed-loop performance 
as compared to the data-based controller, especially when 
the fermentation process experiences more dynamics and 
nonlinearity as demonstrated by a higher step perturbation. 
This is because the kinetics hybrid model could capture the 
nonlinear dynamics of the process. However, if the 
disturbance is not “big”, the simple data-based controller 
should be sufficient.  

VI. CONCLUSION 
A new model-based control design for non-ideally 

mixed fermentation process has been presented in this paper. 
Models with different complexity were employed for the 
controller design. The disturbances of the inlet substrate 
concentration, S0 and dilution rate, D, were simulated to 
study the effectiveness of the designed nonlinear controllers. 
Our study has revealed that the choice of the nonlinear 
controller would depend on the expected disturbances on the 
process. For a relatively small disturbance scenario, the 
data-based controller should be sufficient; however, for a 
significantly large disturbance, the kinetics hybrid model-
based controller was able to enhance the closed-loop 
performance.  
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